Data-flow Analysis: Theoretical Foundations -
Part 2

Y.N. Srikant

Department of Computer Science
Indian Institute of Science
Bangalore 560 012

NPTEL Course on Compiler Design

Y.N. Srikant Theoretical Foundations of DFA

Foundations of Data-flow Analysis

@ Basic questions to be answered

@ Under what situations is the iterative DFA algorithm correct?
@ How precise is the solution produced by it?

@ Will the algorithm converge?

© What is the meaning of a “solution”?

@ The above questions can be answered accurately by a
DFA framework

@ Further, reusable components of the DFA algorithm can be
identified once a framework is defined
A DFA framework (D, V, A, F) consists of
. Adirection of the dataﬂow either forward or backward
A domain of values
A meet operator (V, A) form a semi-lattice
A family of transfer functions, V — V
F includes constant transfer functions for the
ENTRY/EXIT nodes as well

m><0

Y.N. Srikant Theoretical Foundations of DFA

Properties of the lterative DFA Algorithm

@ If the iterative algorithm converges, the result is a solution
to the DF equations

Proof: If the equations are not satisfied by the time the
loop ends, atleast one of the OUT sets changes and we
iterate again

@ If the framework is monotone, then the solution found is the
maximum fixpoint (MFP) of the DF equations
An MFP solution is such that in any other solution, values
of IN[B] and OUT|B] are < the corresponding values of
the MFP (i.e., less precise)

Proof: We can show by induction that the values of IN[B]
and OUT[B] only decrease (in the sense of < relation) as
the algorithm iterates

Y.N. Srikant Theoretical Foundations of DFA

Properties of the lterative DFA Algorithm (2)

@ If the semi-lattice of the framework is monotone and is of
finite height, then the algorithm is guaranteed to converge

Proof: Dataflow values decrease with each iteration

Max no. of iterations = height of the lattice x no. of nodes
in the flow graph

Y.N. Srikant Theoretical Foundations of DFA

Meaning of the Ideal Data-flow Solution

@ Find all possible execution paths from the start node to the
beginning of B

@ (Assuming forward flow) Compute the data-flow value at
the end of each path (using composition of transfer
functions) and apply the A operator to these values to find
their glb

@ No execution of the program can produce a smaller value
for that program point

IDEAL[B] = A fo(Vinit)
P, a possible execution path from start node to B
@ Answers greater (in the sense of <) than IDEAL are
incorrect (one or more execution paths have been ignored)
@ Any value smaller than or equal to IDEAL is conservative,
i.e., safe (one or more infeasible paths have been included)
@ Closer the value to IDEAL, more precise it is

Y.N. Srikant Theoretical Foundations of DFA

Meaning of the Meet-Over-Paths Data-flow Solution

@ Since finding all execution paths is an undecidable
problem, we approximate this set to include all paths in the
flow graph

MOP[B] = A fe(Vinit)

P, a path from start node to B

@ MOP[B] < IDEAL[B], since we consider a superset of the
set of execution paths

Y.N. Srikant Theoretical Foundations of DFA

Meaning of the Maximum Fixpoint Data-flow Solution

@ Finding all paths in a flow graph may still be impossible, if it
has cycles
@ The iterative algorithm does not try this
e It visits all basic blocks, not necessarily in execution order
o It applies the A operator at each join point in the flow graph
e The solution obtained is the Maximum Fixpoint solution
(MFP)
@ If the framework is distributive, then the MOP and MFP
solutions will be identical
@ Otherwise, with just monotonicity, MFP < MOP < IDEAL,
and the solution provided by the iterative algorithm is safe

Y.N. Srikant Theoretical Foundations of DFA

Example to show MFP < MOP

B4

Y.N. Srikant Theoretical Foundations of DFA

Example to show MFP < MORP (2)

@ There are two paths from Start to B4:
Start —+ B1 — B3 — B4 and Start — B2 — B3 — B4

© MOP[B4] = ((fg3 - f31) A (83 - f82))(Vinit)

@ In the iterative algorithm, if we chose to visit the nodes in
the order (Start, B1, B2, B3, B4), then
IN[B4] = fg3(fg1(Vinit) N fg2(Vinit))

@ Note that the A operator is being applied differently here
than in the MOP equation

@ The two values above will be equal only if the framework is
distributive

@ With just monotonicity, we would have IN[B4] < MOP[BA4|

Y.N. Srikant Theoretical Foundations of DFA

Constant Propagation Framework - Data-flow Values

@ The lattice for a single variable in the CP framework is
shown in the next slide

@ An example of product of two lattices is in the next slide

@ DF values in the RD framework can also be considered as
@ values in a product of lattices of definitions
@ one lattice for each definition, with ¢ as T and {d} as the

only other element
@ The lattice of the DF values in the CP framework

e Product of the semi-lattices of the variables (one lattice for
each variable)

Y.N. Srikant Theoretical Foundations of DFA

Product of Two Lattices and Lattice of Constants

'lr 'i' Product lattice (T,T)
T
0o X1 = Ty oD D
I
T ©,1) S
\/
Constant propagation 02

lattice T (UNDEF) \

b
.3 240123 ..

T\ [sxsi=is sl

n (ab)<(cd)iffa<c&b<d
(NAC)

Y.N. Srikant Theoretical Foundations of DFA

CP Framework - The A (meet) Operator

@ In a product lattice, (a1, b) < (ao, bo) iff @y <4 a and
b1 <p b, assuming ai,a, € Aand by, b, € B
@ Each variable is associated with a map m
@ m(v) is the abstract value (as in the lattice) of the variable
vinamap m
@ Each element of the product lattice is a similar, but “larger”
map m
e which is defined for all variables, and
e where m(v) is the abstract value of the variable v
@ Thus, m < ' (in the product lattice), iff for all variables v,
m(v) <m'(v),OR,mAm =m", it m"(v) = m(v) A m'(v),
for all variables v

Y.N. Srikant Theoretical Foundations of DFA

Transfer Functions for the CP Framework

@ Assume one statement per basic block

@ Transfer functions for basic blocks containing many
statements may be obtained by composition

@ m(v) is the abstract value of the variable v in a map m.

@ The set F of the framework contains transfer functions
which accept maps and produce maps as outputs

@ F contains an identity map

@ Map for the Start block is mg(v) = UNDEF, for all
variables v

@ This is reasonable since all variables are undefined before
a program begins

Y.N. Srikant Theoretical Foundations of DFA

Transfer Functions for the CP Framework

@ Let f; be the transfer function of the statement s
o If m = fs(m), then fs is defined as follows

@ If sis not an assignment, fs is the identity function
@ If sis an assignment to a variable x, then m’(v) = m(v), for
all v # x, provided, one of the following conditions holds
(a) If the RHS of sis a constant ¢, then m’(x) = ¢
(b) If the RHS is of the form y + z, then

m'(x) m(y) + m(z), if m(y) and m(z) are constants
NAC, if either m(y) or m(z) is NAC

UNDEF, otherwise

(c) Ifthe RHS is any other expression, then m’(x) = NAC

Y.N. Srikant Theoretical Foundations of DFA

Monotonicity of the CP Framework

It must be noted that the transfer function (m’ = fs(m)) always
produces a “lower” or same level value in the CP lattice,
whenever there is a change in inputs

my) | m@z || m

UNDEF || UNDEF T (UNDEF)
UNDEF e UNDEF

NAC NAC

LNDEF || UNDEF w3 210123
cy c ¢+

NAC NAC W

UNDEF NAC 1 (NAC)
NAC e NAC

NAC NAC

Y.N. Srikant Theoretical Foundations of DFA

Non-distributivity of the CP Framework

Start

B1

B2

- X
mn
N W

The iterative method
determines zto be a
non-constant

B3 | z=x+y .
Z is always a constant
but this cannot be
determined by the
iterative method
stop
Y.N. Srikant Theoretical Foundations of DFA

Non-distributivity of the CF Framework - Example

e If i, f, f3 are transfer functions of B1, B2, B3 (resp.), then
f3(fi(mo) A f2(mo)) < f3(F1(mo)) A f3(F2(mo))
as shown in the table, and therefore the CF framework is
non-distributive

| m | m(x) | m(y) | m(z) |
mq UNDEF | UNDEF | UNDEF
fi(mp) 2 3 UNDEF
fo(mp) 3 2 UNDEF
fi(mo) N fo(mg) NAC NAC UNDEF
f3(f1 (mo) A fg(mo)) NAC NAGC NAC
f3(fi (mo)) 2 3 5
f3(f2(mo)) 3 2 5
f3(f1 (mo)) A fg(fg(mo)) NAC NAGC 5

Y.N. Srikant Theoretical Foundations of DFA

