Data-flow Analysis: Theoretical Foundations - Part 2

Y.N. Srikant

Department of Computer Science Indian Institute of Science Bangalore 560 012

NPTEL Course on Compiler Design

イロン イ押ン イヨン イヨン 一重

 $2Q$

Foundations of Data-flow Analysis

- Basic questions to be answered
	- **1** Under what situations is the iterative DFA algorithm correct?
	- 2 How precise is the solution produced by it?
	- ³ Will the algorithm converge?
	- ⁴ What is the meaning of a "solution"?
- The above questions can be answered accurately by a DFA framework
- Further, reusable components of the DFA algorithm can be identified once a framework is defined
- A DFA framework (*D*, *V*, ∧, *F*) consists of
	- *D* : A direction of the dataflow, either forward or backward
	- *V* : A domain of values
	- ∧ : A meet operator (*V*, ∧) form a semi-lattice
	- F : A family of transfer functions, $V \longrightarrow V$

F includes constant transfer functions for the ENTRY/EXIT nodes as well K ロ X K 個 X K 差 X K 差 X (差)

 2990

Properties of the Iterative DFA Algorithm

• If the iterative algorithm converges, the result is a solution to the DF equations

Proof: If the equations are not satisfied by the time the loop ends, atleast one of the *OUT* sets changes and we iterate again

• If the framework is monotone, then the solution found is the maximum fixpoint (MFP) of the DF equations An MFP solution is such that in any other solution, values of *IN*[*B*] and *OUT*[*B*] are ≤ the corresponding values of the MFP (i.e., less precise)

Proof: We can show by induction that the values of *IN*[*B*] and $OUT[B]$ only decrease (in the sense of \leq relation) as the algorithm iterates

イロト イ押 トイヨ トイヨ トーヨー

 2990

• If the semi-lattice of the framework is monotone and is of finite height, then the algorithm is guaranteed to converge

Proof: Dataflow values decrease with each iteration Max no. of iterations = height of the lattice \times no. of nodes in the flow graph

Meaning of the Ideal Data-flow Solution

- Find all possible execution paths from the start node to the beginning of *B*
- (Assuming forward flow) Compute the data-flow value at the end of each path (using composition of transfer functions) and apply the \land operator to these values to find their *glb*
- No execution of the program can produce a *smaller* value for that program point

$$
IDEAL[B] = \bigwedge_{P, a possible execution path from start node to B} f_P(v_{init})
$$

- Answers greater (in the sense of \leq) than IDEAL are incorrect (one or more execution paths have been ignored)
- Any value smaller than or equal to IDEAL is conservative, *i.e.,* safe (one or more infeasible paths have been included)
- Clo[se](#page-3-0)r the value to IDEAL, more precise [it is](#page-0-0)

 Ω

• Since finding all execution paths is an undecidable problem, we approximate this set to include all paths in the flow graph

$$
MOP[B] = \bigwedge_{P \text{, a path from start node to } B} f_P(v_{init})
$$

• $MOP[B] \leq DEAL[B]$, since we consider a superset of the set of execution paths

Meaning of the Maximum Fixpoint Data-flow Solution

- Finding all paths in a flow graph may still be impossible, if it has cycles
- The iterative algorithm does not try this
	- It visits all basic blocks, not necessarily in execution order
	- \bullet It applies the ∧ operator at each join point in the flow graph
	- The solution obtained is the Maximum Fixpoint solution (MFP)
- If the framework is distributive, then the MOP and MFP solutions will be identical
- Otherwise, with just monotonicity, *MFP* ≤ *MOP* ≤ *IDEAL*, and the solution provided by the iterative algorithm is safe

Example to show $MFP \leq MOP$

4 0 8

KITP P

 299

Ξ

メモトメモト

- There are two paths from Start to B4: *Start* \rightarrow *B*1 \rightarrow *B*3 \rightarrow *B*4 and *Start* \rightarrow *B*2 \rightarrow *B*3 \rightarrow *B*4
- \bullet *MOP*[*B*4] = ((*f*_{B3} · *f*_{B1}) ∧ (*f*_{B3} · *f*_{B2}))(*v*_{*init*})
- In the iterative algorithm, if we chose to visit the nodes in the order (*Start*, *B*1, *B*2, *B*3, *B*4), then $IN[B4] = f_{B3}(f_{B1}(v_{init}) \wedge f_{B2}(v_{init}))$
- Note that the ∧ operator is being applied differently here than in the *MOP* equation
- The two values above will be equal only if the framework is distributive
- With just monotonicity, we would have $IN[B4] \leq MOP[B4]$

KO KARA KE KAEK LE YO GO

- The lattice for a single variable in the CP framework is shown in the next slide
- An example of product of two lattices is in the next slide
- DF values in the RD framework can also be considered as
	- values in a product of lattices of definitions
	- one lattice for each definition, with ϕ as \top and $\{d\}$ as the only other element
- **•** The lattice of the DF values in the CP framework
	- Product of the semi-lattices of the variables (one lattice for each variable)

KO KARA KE KAEK LE YO GO

Product of Two Lattices and Lattice of Constants

 $2Q$

CP Framework - The ∧ (meet) Operator

- In a product lattice, $(a_1, b_1) \leq (a_2, b_2)$ iff $a_1 \leq_A a_2$ and $b_1 \leq_B b_2$ assuming $a_1, a_2 \in A$ and $b_1, b_2 \in B$
- Each variable is associated with a map *m*
- *m*(*v*) is the abstract value (as in the lattice) of the variable *v* in a map *m*
- Each element of the product lattice is a similar, but "larger" map *m*
	- which is defined for all variables, and
	- where $m(v)$ is the abstract value of the variable v
- Thus, $m \le m'$ (in the product lattice), iff for all variables v , $m(v) \le m'(v)$, OR, $m \wedge m' = m''$, if $m''(v) = m(v) \wedge m'(v)$, for all variables *v*

Transfer Functions for the CP Framework

- Assume one statement per basic block
- Transfer functions for basic blocks containing many statements may be obtained by composition
- *m*(*v*) is the abstract value of the variable *v* in a map *m*.
- **•** The set *F* of the framework contains transfer functions which accept maps and produce maps as outputs
- *F* contains an identity map
- Map for the *Start* block is $m_0(v) = UNDEF$, for all variables *v*
- This is reasonable since all variables are undefined before a program begins

KOD KAP KED KED E YA G

Transfer Functions for the CP Framework

- Let *f^s* be the transfer function of the statement *s*
- \bullet If $m' = f_s(m)$, then f_s is defined as follows
	- ¹ If *s* is not an assignment, *f^s* is the identity function
		- 2 If *s* is an assignment to a variable *x*, then $m'(v) = m(v)$, for all $v \neq x$, provided, one of the following conditions holds
			- (a) If the RHS of *s* is a constant *c*, then $m'(x) = c$
			- (b) If the RHS is of the form $y + z$, then

 $m'(x) = m(y) + m(z)$, *if m(y) and m(z) are constants* $=$ *NAC*, *if either m(y) or m(z) is NAC* = *UNDEF*, *otherwise*

(c) If the RHS is any other expression, then $m'(x) = NAC$

KOD KAP KED KED E YA G

Monotonicity of the CP Framework

It must be noted that the transfer function ($m' = f_s(m)$) always produces a "lower" or same level value in the CP lattice, whenever there is a change in inputs

Non-distributivity of the CP Framework

Non-distributivity of the CF Framework - Example

If *f*1, *f*2, *f*³ are transfer functions of *B*1, *B*2, *B*3 (resp.), then $f_3(f_1(m_0) \wedge f_2(m_0)) < f_3(f_1(m_0)) \wedge f_3(f_2(m_0))$ as shown in the table, and therefore the CF framework is non-distributive

 $\left\{ \bigoplus_{i=1}^{n} x_i \in \mathbb{R} \right\} \times \left\{ \bigoplus_{i=1}^{n} x_i \in \mathbb{R} \right\}$

 QQ