
Partial Redundancy Elimination

Y.N. Srikant

Department of Computer Science
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Compiler Design

Y.N. Srikant Partial Redundancy Elimination



Partial Redundancy Elimination Transformation

Y.N. Srikant Partial Redundancy Elimination



Some Definitions

1 Partially redundant computation(prc)
A computation which is performed twice in a certain path

2 Partial redundancy elimination
involves insertions and deletions of computations to ensure
that no prc′s exist

3 Safety
No introduction of computations of new values on any path
in the program

Y.N. Srikant Partial Redundancy Elimination



Previous Work

1 Morel and Renvoise’s algorithm
Bidirectional dataflow analysis, complicated
Does not eliminate all prc′s
Redundant code motion (without gain)

2 Dhamdhere and others improved this algorithm
3 Knoop and Steffen’s algorithm

Unidirectional dataflow analyses, computationally optimal
No redundant code motion
Needs some blocks/edges to be split in the beginning
It is some what unintuitive and complex

Y.N. Srikant Partial Redundancy Elimination



Highlights of Our algorithm

Simple and intuitive, with four unidirectional flows
computationally and lifetime optimal
No edge splitting in the beginning; it is needed only at the
end to insert computations
Yields points of insertion and replacement directly
Introduces the notions of safe partial availability and safe
partial anticipability

Y.N. Srikant Partial Redundancy Elimination



Highlights of Our algorithm

Every safe partially redundant computation offers scope for
redundancy elimination
Any safe partially redundant computation at a point can be
made totally redundant by insertion of new computations at
proper points
Computation of any expression that is totally redundant
can be replaced by a copy rule
After the transformation, no expression is recomputed at a
point if its value is available (not partially) from previous
computations

Y.N. Srikant Partial Redundancy Elimination



Properties of Expressions at a Point p

Availability
Computed along all paths reaching p from the start node,
with no changes to operands

Partial availability
Computed along atleast one path to p

Anticipability
Computed along all paths starting from p to the end node,
with no changes to operands

Partial anticipability
Computed along atleast one path from p

Y.N. Srikant Partial Redundancy Elimination



Partial Availability and Anticipability

Fig.(a) and Fig.(b) - a + b is partially available at entry to 4
Fig.(a) - a + b is partially anticipable at exit of 1
Fig.(b) - a + b is anticipable at exit of 1

Y.N. Srikant Partial Redundancy Elimination



Properties of Expressions at a Point p

Safety
Either available or anticipable p

Safe partial availability
All points on the path of availability from the last
computation of the expression to p are safe

Safe partial anticipability
All points on the path of anticipability from p to the first
computation of the expression are safe

Safe partially redundant computation
Locally anticipable and safe partially available at the entry
of the node

Y.N. Srikant Partial Redundancy Elimination



Safe Partially Available/Anticipable Computation

Fig.(a) - a + b is safe partially anticipable at entry to 3
Fig.(b) - a + b is safe partially available at entry to 4

Y.N. Srikant Partial Redundancy Elimination



Safe Partially Redundant Computation

Fig.(a) - a + b is not safe partially available at entry to 4
Fig.(a) - a + b is not safe partially anticipable at exit of 1
Fig.(b) - a + b is safe partially redundant in 4

Y.N. Srikant Partial Redundancy Elimination



Special Computations in a Basic Block i

FIRSTi
Computation before the first modification of operands (from
top)

LASTi
Last computation after which no modification of operands
takes place

All local redundancies are assumed to have been
eliminated already
Hence, there exist at most one FIRSTi and one LASTi

All other computations of the same expression are in
between these two and are irrelevant to the algorithm

Y.N. Srikant Partial Redundancy Elimination



FIRST and LAST Computations

Y.N. Srikant Partial Redundancy Elimination



Outline of the Algorithm

Our PRE algorithm identifies all safe PRCs and makes them
totally redundant by suitable insertions

1 Compute the predicates, AVi , ANTi , SAFEi , SPAVi , and
SPANTi at entry and exit points of all nodes

2 Mark all points which have both SPAV and SPANT true
and consider the paths formed by connecting such
adjacent marked points

3 Insertion points: just before LAST in starting points of
these paths

4 Insertion edges: those that enter junction nodes on these
paths

5 Replacements are for LAST and FIRST computations in
the starting and ending points of these paths

Y.N. Srikant Partial Redundancy Elimination



Partial Redundancy Transformation

Fig.(a) - a + b is safe partially redundant in 4
Fig.(b) - a + b is made totally redundant by the new block

Y.N. Srikant Partial Redundancy Elimination



Local Properties

TRANSPi (transparency)
True for an expression in a node i , if its operands are not
modified by the execution of statements in node i

COMPi (locally available)
True if there is atleast one computation of the expression in
i and no modification of operands takes place during and
after the computation

ANTLOCi (locally anticipable)
True if there is atleast one computation of the expression in
i and no modification of the operands takes place before
the first computation

Y.N. Srikant Partial Redundancy Elimination



Local Properties

Y.N. Srikant Partial Redundancy Elimination



Global Properties

Availability

AVINi =

{
FALSE if i = s∏

j∈pred(i) AVOUTj otherwise

AVOUTi = COMPi + AVINi .TRANSPi

Anticipability

ANTOUTi =

{
FALSE if i = e∏

j∈succ(i) ANTINj otherwise

ANTINi = ANTLOCi + ANTOUTi .TRANSPi

Safety

SAFEINi = AVINi + ANTINi

SAFEOUTi = AVOUTi + ANTOUTi

Y.N. Srikant Partial Redundancy Elimination



Global Properties

Safe Partial availability

SPAVINi =

{
FALSE if i = s or ¬SAFEINi∑

j∈pred(i) SPAVOUTj otherwise

SPAVOUTi =

{
FALSE if ¬SAFEOUTi
COMPi + SPAVINi .TRANSPi otherwise

Safe Partial anticipability

SPANTOUTi =

{
FALSE if i = e or ¬SAFEOUTi∑

j∈succ(i) SPANTINj otherwise

SPANTINi =


FALSE if ¬SAFEINi
ANTLOCi
+SPANTOUTi .TRANSPi otherwise

Y.N. Srikant Partial Redundancy Elimination



Global Properties

Safe Partial Redundancy
For FIRSTi (at entry of i)

SPREDUNDif = ANTLOCi .SPAVINi

LASTi , when it is distinct from FIRSTi , cannot be safe
partially redundant, because the computations of the
expression between these makes ANTLOCi false

Total Redundancy
For FIRSTi

REDUNDif = ANTLOCi .AVINi

For LASTi

REDUNDil = COMPi .AVp,

where p is the point just before LASTi

Y.N. Srikant Partial Redundancy Elimination



Global Properties

Isolatedness
A computation is isolated , if it is neither safe partially
available nor safe partially anticipable at that point

ISOLATEDif = ANTLOCi .¬SPAVINi .¬(TRANSPi .SPANTOUTi)

ISOLATEDil = COMPi .¬SPANTOUTi .¬(TRANSPi .SPAVINi)

Y.N. Srikant Partial Redundancy Elimination



Predicates for Insertion

INSERTi

True if the point just before the LAST computation in block i
is an insertion point
Interpretation of INSERTi :
(expr should be computed in i) AND (expr should be useful
later) AND ((operands should be modified in i) OR (expr
should not be available from above))
This is possible only for the first node on the path and
those intermediate nodes where the operands of the expr
are modified and the expr is recomputed

INSERTi = COMPi .SPANTOUTi .(¬TRANSPi + ¬SPAVINi)

INSERT(i,j)
True if a computation should be inserted by splitting the
edge (i , j)

INSERT(i,j) = ¬SPAVOUTi .SPAVINj .SPANTINj

Y.N. Srikant Partial Redundancy Elimination



Predicates for Replacement

REPLACEif (respectively REPLACEil )
True if FIRSTi (respectively LASTi ) should be replaced

REPLACEif = ANTLOCi .(SPAVINi + TRANSPi .SPANTOUTi)

REPLACEil = COMPi .(SPANTOUTi + TRANSPi .SPAVINi)

Y.N. Srikant Partial Redundancy Elimination



Example 1

Y.N. Srikant Partial Redundancy Elimination



Example 1

Y.N. Srikant Partial Redundancy Elimination



Example 2

Y.N. Srikant Partial Redundancy Elimination



Example 2

Y.N. Srikant Partial Redundancy Elimination



Example 2

Solution:
Insertion just before the last computation in node 7
Insertion on edge (3, 5)
Replacement of the first computation in nodes 4, 7, and 8
Replacement of the last computations in nodes 4 and 7

Question:
Why should we not split edge (1,3) and place the
computation h = a + b? Why only on the edge (3,5)?

Answer:
It is not safe. The path 1-3-10 had no computation of a + b
before transformation and by placing a computation on the
edge (1,3), we are introducing one
However, this solution works for all “valid” inputs

Y.N. Srikant Partial Redundancy Elimination



Correctness Results

Lemma 1 All insertions of computations corresponding to
the transformation are done at safe points.

Lemma 2 All candidate computations which are safe partially
redundant become totally redundant after
insertions corresponding to the transformation

Lemma 3 Only those candidate computations which would
be redundant after insertions corr esponding to the
transformation are replaced

Lemma 4 After the transformation no path contains more
computations of an expression tha n it contained
before

Theorem 1 The algorithm performs partial redundancy
elimination correctly

Y.N. Srikant Partial Redundancy Elimination



Optimality Results

Lemma 5 A candidate computation is not replaced by the
transformation if and only if it is an isolated
computation

Theorem 2 The transformation is computationally optimal, i.e.,
there does not exist any other correct
transformation with less number of computations
of an expression on any path

Theorem 3 The transformation is lifetime optimal, i.e., the
transformation keeps the live ranges of the newly
introduced temporaries to the minimum

Y.N. Srikant Partial Redundancy Elimination


