Partial Redundancy Elimination

Y.N. Srikant

Department of Computer Science
Indian Institute of Science
Bangalore 560 012

NPTEL Course on Compiler Design

Y.N. Srikant Partial Redundancy Elimination

Partial Redundancy Elimination Transformation

a=c
X =a+b
3
4 |y=atb
b=d

(a)

a=c 2
h = a+b
1| x=h

=
T =<
nn

Partial Redundancy Elimination

Some Definitions

@ Partially redundant computation(prc)
e A computation which is performed twice in a certain path
© Partial redundancy elimination

e involves insertions and deletions of computations to ensure
that no prc’s exist

© Safety

e No introduction of computations of new values on any path
in the program

Y.N. Srikant Partial Redundancy Elimination

Previous Work

@ Morel and Renvoise’s algorithm
o Bidirectional dataflow analysis, complicated
e Does not eliminate all prc’s
e Redundant code motion (without gain)

© Dhamdhere and others improved this algorithm

© Knoop and Steffen’s algorithm

Unidirectional dataflow analyses, computationally optimal
No redundant code motion

Needs some blocks/edges to be split in the beginning

It is some what unintuitive and complex

Y.N. Srikant Partial Redundancy Elimination

Highlights of Our algorithm

@ Simple and intuitive, with four unidirectional flows
@ computationally and lifetime optimal

@ No edge splitting in the beginning; it is needed only at the
end to insert computations

@ Yields points of insertion and replacement directly

@ Introduces the notions of safe partial availability and safe
partial anticipability

Y.N. Srikant Partial Redundancy Elimination

Highlights of Our algorithm

@ Every safe partially redundant computation offers scope for
redundancy elimination

@ Any safe partially redundant computation at a point can be
made totally redundant by insertion of new computations at
proper points

@ Computation of any expression that is totally redundant
can be replaced by a copy rule

@ After the transformation, no expression is recomputed at a
point if its value is available (not partially) from previous
computations

Y.N. Srikant Partial Redundancy Elimination

Properties of Expressions at a Point p

@ Availability

e Computed along all paths reaching p from the start node,
with no changes to operands

@ Partial availability
o Computed along atleast one path to p
@ Anticipability
e Computed along all paths starting from p to the end node,
with no changes to operands
@ Partial anticipability
e Computed along atleast one path from p

Y.N. Srikant Partial Redundancy Elimination

Partial Availability and Anticipability

Fig.(a) and Fig.(b) - a + b is partially available at entry to 4
Fig.(a) a -+ b is partially anticipable at exit of 1
Fig.(b) - a+ b is anticipable at exit of 1

‘x a+b‘ ‘

IS
~

n
o

+
E

\v arb]

D
>
(=%

(b)

Y.N. Srikant Partial Redundancy Elimination

Properties of Expressions at a Point p

@ Safety
e Either available or anticipable p
@ Safe partial availability

o All points on the path of availability from the /ast
computation of the expression to p are safe

@ Safe partial anticipability

e All points on the path of anticipability from p to the first
computation of the expression are safe

@ Safe partially redundant computation

e Locally anticipable and safe partially available at the entry
of the node

Y.N. Srikant Partial Redundancy Elimination

Safe Partially Available/Anticipable Computation

Fig.(a) - a+ b is safe partially anticipable at entry to 3
Fig.(b) - a+ b is safe partially available at entry to 4

1 2

end end
® safe point

(a) O unsafe point (b)

Y.N. Srikant Partial Redundancy Elimination

Safe Partially Redundant Computation

Fig.(a) - a+ b is not safe partially available at entry to 4
Fig.(a) - a+ b is not safe partially anticipable at exit of 1
Fig.(b) - a+ b is safe partially redundant in 4

1 2

y=ae| []

® safe point
(a) O unsafe point (b)

Y.N. Srikant Partial Redundancy Elimination

Special Computations in a Basic Block i

@ FIRST;
e Computation before the first modification of operands (from
top)
@ LAST;

e Last computation after which no modification of operands
takes place

@ All local redundancies are assumed to have been
eliminated already

@ Hence, there exist at most one FIRST; and one LAST;

@ All other computations of the same expression are in
between these two and are irrelevant to the algorithm

Y.N. Srikant Partial Redundancy Elimination

FIRST and LAST Computations

X = atb
X = atb =
{(no modifications
to a and b here) b=..
y = a+b z=a+b
a-=-
Such situati b=..
uch situations
= a+
do not occur since y=a b

local CSE has been

carried out The modifications

to a and b, and

z = a+b are not
relevant. Only

x = a+b and

y = a+b are relevant
(FIRST and LAST
computations)

Y.N. Srikant Partial Redundancy Elimination

Outline of the Algorithm

Our PRE algorithm identifies all safe PRCs and makes them
totally redundant by suitable insertions
@ Compute the predicates, AV;, ANT;, SAFE;, SPAV;, and
SPANT,; at entry and exit points of all nodes
@ Mark all points which have both SPAV and SPANT true
and consider the paths formed by connecting such
adjacent marked points

© Insertion points: just before LAST in starting points of
these paths

© Insertion edges: those that enter junction nodes on these
paths

© Replacements are for LAST and FIRST computations in
the starting and ending points of these paths

Y.N. Srikant Partial Redundancy Elimination

Partial Redundancy Transformation

Fig.(a) - a+ b is safe partially redundant in 4
Fig.(b) - a+ b is made totally redundant by the new block

1 a=c 2
2 h = a+b
1 x=h
-

4 |y=atb 4
b=d

T <
nn

(a) (k)

Y.N. Srikant Partial Redundancy Elimination

Local Properties

@ TRANSP; (transparency)
e True for an expression in a node J, if its operands are not
modified by the execution of statements in node i
@ COMP; (locally available)
e True if there is atleast one computation of the expression in
i and no modification of operands takes place during and
after the computation
@ ANTLOC; (locally anticipable)
e True if there is atleast one computation of the expression in
i and no modification of the operands takes place before
the first computation

Y.N. Srikant Partial Redundancy Elimination

Local Properties

TRANS

No assighments
to @ and b here

COMP

a+b is the expression under consideration

Xx=a+h

No assignments
to @ and b here

x cannot be
aorbh

ANTLOC

Y.N. Srikant

No assignments
to @ and b here

X =a+h

Partial Redundancy Elimination

Global Properties

Availability

AVIN;, = { FALSE ifi=s

[Ljeprea(iy AVOUT; otherwise

AVOUT;, = COMP; + AVIN,. TRANSP;
Anticipability

FALSE ifi=e

ANTOUT; = {H/.GSUCC(,.) ANTIN; otherwise

ANTIN; = ANTLOC; + ANTOUT;. TRANSP;
Safety

SAFEIN; = AVIN; + ANTIN;
SAFEOUT, = AVOUT, + ANTOUT;

Y.N. Srikant Partial Redundancy Elimination

Global Properties

Safe Partial availability

FALSE if i = s or ~SAFEIN;

SPAVIN; = {Z/epred(i) SPAVOUT; otherwise

[FALSE it ~SAFEOUT,
SPAVOUT; = {COMP,+SPAV/N,-.TRANSP,- otherwise

Safe Partial anticipability

FALSE it i = e or ~SAFEOUT,
SPANTOUT; = {zjesucc(,) SPANTIN; otherwise
FALSE it ~SAFEIN;
SPANTIN; = { ANTLOC,
+SPANTOUT;. TRANSP; otherwise

Y.N. Srikant Partial Redundancy Elimination

Global Properties

@ Safe Partial Redundancy
e For FIRST; (at entry of i)
SPREDUND,, = ANTLOC,;.SPAVIN;

e LAST;, when it is distinct from FIRST;, cannot be safe
partially redundant, because the computations of the
expression between these makes ANTLOC,; false

@ Total Redundancy
e For FIRST;

REDUND,, = ANTLOC;.AVIN;
e For LAST;

REDUND,; = COMP;.AV,,
where p is the point just before LAST;

Y.N. Srikant Partial Redundancy Elimination

Global Properties

@ Isolatedness
A computation is isolated, if it is neither safe partially
available nor safe partially anticipable at that point

ISOLATED;, = ANTLOC;.—~SPAVIN;.—~(TRANSP; . SPANTOUT;)

ISOLATED;, = COMP;.~SPANTOUT;.—~(TRANSP;.SPAVIN;)

Y.N. Srikant Partial Redundancy Elimination

Predicates for Insertion

INSERT;

@ True if the point just before the LAST computation in block i
is an insertion point

@ Interpretation of INSERT;:
(expr should be computed in i) AND (expr should be useful
later) AND ((operands should be modified in i) OR (expr
should not be available from above))

@ This is possible only for the first node on the path and
those intermediate nodes where the operands of the expr
are modified and the expr is recomputed

INSERT, = COMP;.SPANTOUT,.(~TRANSP; + ~SPAVIN;)

INSERT ;)y
@ True if a computation should be inserted by splitting the
edge (/. /)
INSERT;;y = —SPAVOUT;.SPAVIN;.SPANTIN;

Y.N. Srikant Partial Redundancy Elimination

Predicates for Replacement

REPLACE; (respectively REPLACE;)
@ True if FIRST; (respectively LAST;) should be replaced

REPLACE, = ANTLOC,.(SPAVIN; + TRANSP;.SPANTOUT,)
REPLACE, = COMP,.(SPANTOUT; + TRANSP,.SPAVIN;)

Y.N. Srikant Partial Redundancy Elimination

Example 1

For Blocks 1a and 1b
comp =T, transp=T
antloc =T

INSERT,,= T.T.(F+T)=T
REPLACE,, = T.(F+T.T) =T
REPLACE,, = T.T+T.F} =T

INSERT,, = T.T.(F+F) = F
REPLACE,, = T.(T+T.T)=T
REPLACE,, = T.(T+T.T)=T

INSERT, 5= T.T.T=T
INSERT;,,, = T.T.T=T

For Block 3 m=a+bh| 3

INSERT,= T.T.(T+F) =T
REPLACE; = T.(T+F.T) =T
REPLACE, = T(T+T)=T

comp=T a=5+c
transp =F b =6+d
antloc =T n =a+b

INSERT, = F.F.(T+F) = F
REPLACE, = T.(T+F.F) =T

For Block 4 _

_ y =atb
comp=F _ 4

b=d
transp = F
antloc =T REPLA
(a)
REPLA

Y.N. Srikant

: INSERT, = COMP,; . SPANTOUT, .(!TRANSP,; + !SPAVIN;)

INSERT,, = !SPAVOUT; .SPAVIN, .SPANTIN;

CE;; = ANTLOC, .(SPAVIN; + TRANSP; .SPANTOUT,)

CE, = COMP, .(SPANTOUT, + TRANSP, :SPAVIN,)

Partial Redundancy Elimination

Example 1

1a

m=a+h| 3
a=5+c
b =6+d
n =a+b

y=a+b| 4

(a)

Y.N. Srikant

5a

h1=a+b 2a
z=h1

Il i |
ih1 = a+bi 5b

-

Ihi=arb 2b

‘/__d

W

Partial Redundancy Elimination

Example 2

1 Initial program
ANTLOC = {2,4,7,8,9}

COMP = {2,4,7,9}

= AVIN = @
o |y=ath
TRANSP = {1,3,4,5,6,7,9,10} a=@ AVOUT = {2,4,7,9}
= @l ANTIN = {2,4,5,6,7,8,9}

ANTOUT = {4,5,6,7,8}
SAFEIN = {2,4,5,6,7,8,9}
:| SAFEOUT = {2,4,5,6,7,8,9}

REPLACE;; = ANTLOC; .(SPAVIN, +
TRANSP, SPANTOUT,)

REPLACE; = COMP; .(SPANTOUT, +
TRANSP, :SPAVIN,) —

SPAVIN = {4,5,8} |
SPAVOUT = {2,4,5,7,9}

SPANTIN = {2,4,5,6,7,8,9} =
SPANTOUT = {4,5,6,7,8) a=c

INSERT, = COMP; . SPANTOUT, .

INSERT, = {7}
('TRANSP, + ISPAVIN,)

INSERT; = {(3,5)}
REPLACE; = {4.7.8)
INSERT; = !SPAVOUT; .SPAVIN; .SPANTIN; 10 |REPLACE={4.7)

Y.N. Srikant Partial Redundancy Elimination

Example 2

1
’/|—4| Transformed program

o |y=ath
a=c
X=ath

Y.N. Srikant Partial Redundancy Elimination

Example 2

Solution:
@ Insertion just before the last computation in node 7
@ Insertion on edge (3, 5)
@ Replacement of the first computation in nodes 4, 7, and 8
@ Replacement of the last computations in nodes 4 and 7
Question:

@ Why should we not split edge (1,3) and place the
computation h = a+ b? Why only on the edge (3,5)?

Answer:

@ ltis not safe. The path 1-3-10 had no computation of a+ b
before transformation and by placing a computation on the
edge (1,3), we are introducing one

@ However, this solution works for all “valid” inputs

Y.N. Srikant Partial Redundancy Elimination

Correctness Results

Lemma 1 All insertions of computations corresponding to
the transformation are done at safe points.

Lemma 2 All candidate computations which are safe partially
redundant become totally redundant after
insertions corresponding to the transformation

Lemma 3 Only those candidate computations which would
be redundant after insertions corr esponding to the
transformation are replaced

Lemma 4 After the transformation no path contains more
computations of an expression tha n it contained
before

Theorem 1 The algorithm performs partial redundancy
elimination correctly

Y.N. Srikant Partial Redundancy Elimination

Optimality Results

Lemma 5 A candidate computation is not replaced by the
transformation if and only if it is an isolated
computation

Theorem 2 The transformation is computationally optimal, i.e.,
there does not exist any other correct
transformation with less number of computations
of an expression on any path

Theorem 3 The transformation is lifetime optimal, i.e., the
transformation keeps the live ranges of the newly
introduced temporaries to the minimum

Y.N. Srikant Partial Redundancy Elimination

