
The Static Single Assignment Form:
Construction and Application to Program Optimizations

- Part 1

Y.N. Srikant

Department of Computer Science
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Compiler Design

Y.N. Srikant Program Optimizations and the SSA Form



The SSA Form: Introduction

A new intermediate representation
Incorporates def-use information
Every variable has exactly one definition in the program
text

This does not mean that there are no loops
This is a static single assignment form, and not a dynamic
single assignment form

Some compiler optimizations perform better on SSA forms
Conditional constant propagation and global value
numbering are faster and more effective on SSA forms

A sparse intermediate representation
If a variable has N uses and M definitions, then def-use
chains need space and time proportional to N.M
But, the corresponding instructions of uses and definitions
are only N + M in number
SSA form, for most realistic programs, is linear in the size of
the original program

Y.N. Srikant Program Optimizations and the SSA Form



A Program in non-SSA Form and its SSA Form

Y.N. Srikant Program Optimizations and the SSA Form



SSA Form: A Definition

A program is in SSA form, if each use of a variable is
reached by exactly one definition
Flow control remains the same as in the non-SSA form
A special merge operator, φ, is used for selection of values
in join nodes
Not every join node needs a φ operator for every variable
No need for a φ operator, if the same definition of the
variable reaches the join node along all incoming edges
Often, the SSA form is augmented with u-d and d-u chains
to facilitate design of faster algorithms
Translation from SSA to machine code introduces copy
operations, which may introduce some inefficiency

Y.N. Srikant Program Optimizations and the SSA Form



Program 2 in non-SSA Text Form

Y.N. Srikant Program Optimizations and the SSA Form



Program 2 in non-SSA Flow Graph Form

Y.N. Srikant Program Optimizations and the SSA Form



Program 3 in non-SSA and SSA Form

Y.N. Srikant Program Optimizations and the SSA Form



Conditions on the SSA form

After translation, the SSA form should satisfy the following
conditions for every variable v in the original program.

1 If two non-null paths from nodes X and Y each having a
definition of v converge at a node p, then p contains a
trivial φ-function of the form v = φ(v , v , ..., v), with the
number of arguments equal to the in-degree of p.

2 Each appearance of v in the original program or a
φ-function in the new program has been replaced by a new
variable vi , leaving the new program in SSA form.

3 Any use of a variable v along any control path in the
original program and the corresponding use of vi in the
new program yield the same value for both v and vi .

Y.N. Srikant Program Optimizations and the SSA Form



Conditions on SSA Forms

Condition 1 in the previous slide is recursive.
It implies that φ-assignments introduced by the translation
procedure will also qualify as assignments to v
This in turn may lead to introduction of more φ-assignments
at other nodes

It would be wasteful to place φ-functions in all join nodes
It is possible to locate the nodes where φ-functions are
essential
This is captured by the dominance frontier

Y.N. Srikant Program Optimizations and the SSA Form



The Join Sets and φ Nodes

Given S: set of flow graph nodes, the set JOIN(S) is
the set of all nodes n, such that there are at least two
non-null paths in the flow graph that start at two distinct
nodes in S and converge at n

The paths considered should not have any other common
nodes apart from n

The iterated join set, JOIN+(S) is

JOIN(1)(S) = JOIN(S)
JOIN(i+1)(S) = JOIN(S ∪ JOIN(i)(S))

If S is the set of assignment nodes for a variable v , then
JOIN+(S) is precisely the set of flow graph nodes, where
φ-functions are needed (for v )
JOIN+(S) is termed the dominance frontier, DF (S), and
can be computed efficiently

Y.N. Srikant Program Optimizations and the SSA Form



JOIN Example -1

variable i : JOIN+({B1,B7}) = {B2}
variable n: JOIN+({B1,B5,B6}) = {B2,B7}

Y.N. Srikant Program Optimizations and the SSA Form



JOIN Example - 2

Y.N. Srikant Program Optimizations and the SSA Form



Dominators and Dominance Frontier

Given two nodes x and y in a flow graph, x dominates y
(x ∈ dom(y)) , if x appears in all paths from the Start node
to y
The node x strictly dominates y , if x dominates y and
x 6= y
x is the immediate dominator of y (denoted idom(y)), if x
is the closest strict dominator of y
A dominator tree shows all the immediate dominator
relationships
The dominance frontier of a node x , DF (x), is the set of all
nodes y such that

x dominates a predecessor of y
(p ∈ preds(y) and x ∈ dom(p))
but x does not strictly dominate y (x /∈ dom(y)− {y})

Y.N. Srikant Program Optimizations and the SSA Form



Dominance frontiers - An Intuitive Explanation

A definition in node n forces a φ-function in join nodes that
lie just outside the region of the flow graph that n
dominates; hence the name dominance frontier
Informally, DF (x) contains the first nodes reachable from x
that x does not dominate, on each path leaving x

In example 1 (next slide), DF (B1) = ∅, since B1 dominates
all nodes in the flow graph except Start and B1, and there is
no path from B1 to Start or B1
In the same example, DF (B2) = {B2}, since B2 dominates
all nodes except Start, B1, and B2, and there is a path from
B2 to B2 (via the back edge)
Continuing in the same example, B5, B6, and B7 do not
dominate any node and the first reachable nodes are B7,
B7, and B2 (respectively). Therefore,
DF (B5) = DF (B6) = {B7} and DF (B7) = {B2}
In example 2 (second next slide), B5 dominates B6 and B7,
but not B8; B8 is the first reachable node from B5 that B5
does not dominate; therefore, DF (B5) = {B8}

Y.N. Srikant Program Optimizations and the SSA Form



DF Example - 1

Y.N. Srikant Program Optimizations and the SSA Form



DF Example - 2

Y.N. Srikant Program Optimizations and the SSA Form



Computation of Dominance Frontiers - 2

1 Identify each join node x in the flow graph
2 For each predecessor, p of x in the flow graph, traverse the

dominator tree upwards from p, till idom(x)
3 During this traversal, add x to the DF -set of each node met

In example 1 (second previous slide), consider the join
node B2; its predecessors are B1 and B7

B1 is also idom(B2) and hence is not considered
Starting from B7 in the dominator tree, in the upward
traversal till B1 (i.e., idom(B2)) B2 is added to the DF sets
of B7, B3, and B2

In example 2 (previous slide), consider the join node B8; its
predecessors are B4, B6, and B7

Consider B4: B8 is added to DF (B4)
Consider B6: B8 is added to DF (B6) and DF (B5)
Consider B7: B8 is added to DF (B7); B8 has already been
added to DF (B5)
All the above traversals stop at B3, which is idom(B8)

Y.N. Srikant Program Optimizations and the SSA Form



DF Algorithm

{
for all nodes n in the flow graph do
DF (n) = ∅;
for all nodes n in the flow graph do {
/* It is enough to consider only join nodes */
/* Other nodes automatically get their DF sets /*
/* computed during this process /*

for each predecessor p of n in the flow graph do {
t = p;
while (t 6= idom(n)) do {

DF (t) = DF (t) ∪ {n};
t = idom(t);

}
}

}
}

Y.N. Srikant Program Optimizations and the SSA Form



Minimal SSA Form Construction 1

1 Compute DF sets for each node of the flow graph
2 For each variable v , place trivial φ-functions in the nodes of

the flow graph using the algorithm place-phi-function(v)
3 Rename variables using the algorithm

Rename-variables(x,B)

φ-Placement Algorithm
The φ-placement algorithm picks the nodes ni with
assignments to a variable
It places trivial φ-functions in all the nodes which are in
DF (ni), for each i
It uses a work list (i.e., queue) for this purpose

Y.N. Srikant Program Optimizations and the SSA Form



φ-function placement Example

Y.N. Srikant Program Optimizations and the SSA Form



The function place-phi-function(v) - 1

function Place-phi-function(v ) // v is a variable
// This function is executed once for each variable in the flow graph
begin

// has-phi(B) is true if a φ-function has already
// been placed in B
// processed(B) is true if B has already been processed once
// for variable v
for all nodes B in the flow graph do

has-phi(B) = false; processed(B) = false;
end for
W = ∅; // W is the work list
// Assignment-nodes(v ) is the set of nodes containing
// statements assigning to v
for all nodes B ∈ Assignment-nodes(v ) do

processed(B) = true; Add(W ,B);
end for

Y.N. Srikant Program Optimizations and the SSA Form



The function place-phi-function(v) - 2

while W 6= ∅ do
begin

B = Remove(W );
for all nodes y ∈ DF (B) do

if (not has-phi(y )) then
begin

place < v = φ(v , v , ..., v) > in y ;
has-phi(y ) = true;
if (not processed(y )) then
begin processed(y ) = true;

Add(W , y );
end

end
end for

end
end

Y.N. Srikant Program Optimizations and the SSA Form


