The Static Single Assignment Form:

Construction and Application to Program Optimizations
- Part 1

Y.N. Srikant

Department of Computer Science
Indian Institute of Science
Bangalore 560 012

NPTEL Course on Compiler Design

Y.N. Srikant Program Optimizations and the SSA Form

The SSA Form: Introduction

@ A new intermediate representation

@ Incorporates def-use information
@ Every variable has exactly one definition in the program
text
e This does not mean that there are no loops
e This is a static single assignment form, and not a dynamic
single assignment form
@ Some compiler optimizations perform better on SSA forms
e Conditional constant propagation and global value
numbering are faster and more effective on SSA forms
@ A sparse intermediate representation
e If a variable has N uses and M definitions, then def-use
chains need space and time proportional to N.M
e But, the corresponding instructions of uses and definitions
are only N + M in number
e SSA form, for most realistic programs, is linear in the size of
the original program

Y.N. Srikant Program Optimizations and the SSA Form

A Program in non-SSA Form and its SSA Form

read A,B,C
if (A=B)
if (A>C)max = A
else max =C
else if (B>C) max = B
else max =C
printf (max) ‘ A

‘ max, = §(max max, mex max)

Print
max

Y.N. Srikant Program Optimizations and the SSA Form

SSA Form: A Definition

@ A program is in SSA form, if each use of a variable is
reached by exactly one definition

@ Flow control remains the same as in the non-SSA form

@ A special merge operator, ¢, is used for selection of values
in join nodes

@ Not every join node needs a ¢ operator for every variable

@ No need for a ¢ operator, if the same definition of the
variable reaches the join node along all incoming edges

@ Often, the SSA form is augmented with u-d and d-u chains
to facilitate design of faster algorithms

@ Translation from SSA to machine code introduces copy
operations, which may introduce some inefficiency

Y.N. Srikant Program Optimizations and the SSA Form

Program 2 in non-SSA Text Form

{Read A; LSR =1, RSR=A;
SR = (LSR+RSR)/2;
Repeat {
T =8SR*SR;
if (T>A) RSR =SR;
else if (T<A) LSR = SR;
else {LSR = SR; RSR = SR}
SR = (LSR+RSR)/Z;
Until (LSR # RSR);
Print SR;

}

Y.N. Srikant Program Optimizations and the SSA Form

Program 2 in non-SSA Flow Graph Form

Read A
LSR;=1;RSR = A
SR, = (LSR{¥RSR,)/2

B1

LSR=1;R8R=A

B1| gr- {LSR+RSR)12

LSR, = ®(LSR;, LSR)
RSR; = $(RSR;, RSR)

SR, = ®(SR;,SR;) | B2

B7

LSR; = ®{LSR,,LSR4,LSR,)
RSR; = ®(RSR;,RSR,,RSR)
SR = $(LSR;+RSR,)/2

LSRg != RSR

Y.N. Srikant Program Optimizations and the SSA Form

Program 3 in non-SSA and SSA Form

B6
[n=n/2] [n=3*n+1] [Stop]
B5

B4

B7

Y.N. Srikant Program Optimizations and the SSA Form

Conditions on the SSA form

After translation, the SSA form should satisfy the following
conditions for every variable v in the original program.

@ If two non-null paths from nodes X and Y each having a
definition of v converge at a node p, then p contains a
trivial ¢-function of the form v = ¢(v, v, ..., v), with the
number of arguments equal to the in-degree of p.

© Each appearance of v in the original program or a
¢-function in the new program has been replaced by a new
variable v;, leaving the new program in SSA form.

© Any use of a variable v along any control path in the

original program and the corresponding use of v; in the
new program yield the same value for both v and v;.

Y.N. Srikant Program Optimizations and the SSA Form

Conditions on SSA Forms

@ Condition 1 in the previous slide is recursive.

o It implies that ¢-assignments introduced by the translation
procedure will also qualify as assignments to v

e This in turn may lead to introduction of more ¢-assignments
at other nodes

@ It would be wasteful to place ¢-functions in all join nodes

@ |t is possible to locate the nodes where ¢-functions are
essential

@ This is captured by the dominance frontier

Y.N. Srikant Program Optimizations and the SSA Form

The Join Sets and ¢ Nodes

Given S: set of flow graph nodes, the set JOIN(S) is

@ the set of all nodes n, such that there are at least two
non-null paths in the flow graph that start at two distinct
nodes in S and converge at n

e The paths considered should not have any other common
nodes apart from n

@ The iterated join set, JOINT(S) is

JOIN(S) = JOIN(S)
JOINU+(S) = JOIN(S U JOINY(S))

@ If S is the set of assignment nodes for a variable v, then
JOINT(S) is precisely the set of flow graph nodes, where
¢-functions are needed (for v)

@ JOINT(S) is termed the dominance frontier, DF(S), and
can be computed efficiently

Y.N. Srikant Program Optimizations and the SSA Form

JOIN Example -1

e variable i: JOIN*({B1, B7}) = {B2}
@ variable n: JOIN* ({B1, B5, B6}) = {B2, B7}

B3 B4

B6

Y.N. Srikant Program Optimizations and the SSA Form

JOIN Example - 2

BO

Read A
LSR=1; RSR=A
SR = (LSR+RSR)/2

B1
SR: Join"({B1,88)) = (B2}

LSR: Join™({B1,B6,B7}) = {B2,B8}
RSR: Join*({B1,B4,B7}) = {B2,B8}

BS

i
« LSR = SR
- ESRISH RSR = SR

B6
B8 [SR=(LSR+RSR)2 |

B7

B9

B10(Printsk | stop | B11

Y.N. Srikant Program Optimizations and the SSA Form

Dominators and Dominance Frontier

@ Given two nodes x and y in a flow graph, x dominates y
(x € dom(y)) , if x appears in all paths from the Start node
toy

@ The node x strictly dominates y, if x dominates y and
X#Yy

@ x is the immediate dominator of y (denoted idom(y)), if x
is the closest strict dominator of y

@ A dominator tree shows all the immediate dominator
relationships

@ The dominance frontier of a node x, DF(x), is the set of all
nodes y such that
e x dominates a predecessor of y
(p € preds(y) and x € dom(p))
e but x does not strictly dominate y (x ¢ dom(y) — {y})

Y.N. Srikant Program Optimizations and the SSA Form

Dominance frontiers - An Intuitive Explanation

@ A definition in node n forces a ¢-function in join nodes that
lie just outside the region of the flow graph that n
dominates; hence the name dominance frontier

@ Informally, DF(x) contains the first nodes reachable from x
that x does not dominate, on each path leaving x

e In example 1 (next slide), DF(B1) = (), since B1 dominates
all nodes in the flow graph except Start and B1, and there is
no path from B1 to Start or B1

e In the same example, DF(B2) = {B2}, since B2 dominates
all nodes except Start, B1, and B2, and there is a path from
B2 to B2 (via the back edge)

e Continuing in the same example, B5, B6, and B7 do not
dominate any node and the first reachable nodes are B7,
B7, and B2 (respectively). Therefore,

DF(B5) = DF(B6) = {B7} and DF(B7) = {B2}

e In example 2 (second next slide), B5 dominates B6 and B7,
but not B8; B8 is the first reachable node from B5 that B5S
does not dominate; therefore, DF(B5) = {B8}

Y.N. Srikant Program Optimizations and the SSA Form

DF Example - 1

Start @
B1 o
B3 (B2} B4 ©
B3 [even(n)] [printi }54 /l\‘ \
\ B5 B6 B7 Stop
(B7} (BT} (B2} ®

Y.N. Srikant Program Optimizations and the SSA Form

DF Example - 2

o |po

Read A J’

B1 | LSR=1;RSR=A ¢ [Bd
SR = (LSR+RSR)2 |

{82} B2

{82} B3

el N -~

(B8} B4 (B8} BS

B8
SN\
T B9

B6 B
B7
{B8} (B8} \.
® B10
Dominator tree l
B8 SR =(LSR4RSR)2 | with dominance
frontiers ® (BT

LSR!=RSR | B9

F
B10 [PrntSR | —f stop B11

Y.N. Srikant Program Optimizations and the SSA Form

Computation of Dominance Frontiers - 2

@ Identify each join node x in the flow graph

© For each predecessor, p of x in the flow graph, traverse the
dominator tree upwards from p, till idom(x)

© During this traversal, add x to the DF-set of each node met

@ In example 1 (second previous slide), consider the join
node B2; its predecessors are B1 and B7
e B1is also idom(B2) and hence is not considered
e Starting from B7 in the dominator tree, in the upward
traversal till B1 (i.e., idom(B2)) B2 is added to the DF sets
of B7, B3, and B2
@ In example 2 (previous slide), consider the join node B8; its
predecessors are B4, B6, and B7
e Consider B4: B8 is added to DF(B4)
e Consider B6: B8 is added to DF(B6) and DF(B5)
e Consider B7: B8 is added to DF(B7); B8 has already been
added to DF(B5)
e All the above traversals stop at B3, which is idom(B8)

Y.N. Srikant Program Optimizations and the SSA Form

DF Algorithm

{

for all nodes n in the flow graph do
DF(n) = 0;
for all nodes n in the flow graph do {
/* It is enough to consider only join nodes */
/* Other nodes automatically get their DF sets /*
/* computed during this process /*
for each predecessor p of nin the flow graph do {
t=p;
while (t # idom(n)) do {
DF(t) = DF(t) U {n};
t = idom(t);
}
}
}
}

Y.N. Srikant Program Optimizations and the SSA Form

Minimal SSA Form Construction 1

@ Compute DF sets for each node of the flow graph

© For each variable v, place trivial ¢-functions in the nodes of
the flow graph using the algorithm place-phi-function(v)

© Rename variables using the algorithm
Rename-variables(x,B)

¢-Placement Algorithm

@ The ¢-placement algorithm picks the nodes n; with
assignments to a variable

@ It places trivial ¢-functions in all the nodes which are in
DF(n;), for each i

@ It uses a work list (i.e., queue) for this purpose

Y.N. Srikant Program Optimizations and the SSA Form

¢-function placement Example

i= o, i)

n= ®(n, n)
printi] B4 @

[
B6 {BN

n=3*n+1] [Stop]q:

B7 {B2}

Dominance frontier is written beside BB no.

Y.N. Srikant Program Optimizations and the SSA Form

The function place-phi-function(v) - 1

function Place-phi-function(v) // v is a variable
// This function is executed once for each variable in the flow graph
begin
/I has-phi(B) is true if a ¢-function has already
// been placed in B
/I processed(B) is true if B has already been processed once
// for variable v
for all nodes B in the flow graph do
has-phi(B) = false; processed(B) = false;
end for
W = 0; // W is the work list
// Assignment-nodes(v) is the set of nodes containing
// statements assigning to v
for all nodes B € Assignment-nodes(v) do
processed(B) = true; Add(W, B);
end for

Y.N. Srikant Program Optimizations and the SSA Form

The function place-phi-function(v) - 2

while W # 0 do
begin
B = Remove(W);
for all nodes y € DF(B) do
if (not has-phi(y)) then
begin
place < v =¢(v,v,...,v) >iny;
has-phi(y) = true;
if (not processed(y)) then
begin processed(y) = true;
Add(W, y);
end
end
end for
end
end

Y.N. Srikant Program Optimizations and the SSA Form

