
The Static Single Assignment Form:
Construction and Application to Program Optimizations

- Part 2

Y.N. Srikant

Department of Computer Science
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Compiler Design

Y.N. Srikant Program Optimizations and the SSA Form



SSA Form: A Definition

A program is in SSA form, if each use of a variable is
reached by exactly one definition
Flow control remains the same as in the non-SSA form
A special merge operator, φ, is used for selection of values
in join nodes
Not every join node needs a φ operator for every variable
No need for a φ operator, if the same definition of the
variable reaches the join node along all incoming edges
Often, the SSA form is augmented with u-d and d-u chains
to facilitate design of faster algorithms
Translation from SSA to machine code introduces copy
operations, which may introduce some inefficiency

Y.N. Srikant Program Optimizations and the SSA Form



Program 3 in non-SSA and SSA Form

Y.N. Srikant Program Optimizations and the SSA Form



Conditions on the SSA form

After translation, the SSA form should satisfy the following
conditions for every variable v in the original program.

1 If two non-null paths from nodes X and Y each having a
definition of v converge at a node p, then p contains a
trivial φ-function of the form v = φ(v , v , ..., v), with the
number of arguments equal to the in-degree of p.

2 Each appearance of v in the original program or a
φ-function in the new program has been replaced by a new
variable vi , leaving the new program in SSA form.

3 Any use of a variable v along any control path in the
original program and the corresponding use of vi in the
new program yield the same value for both v and vi .

Y.N. Srikant Program Optimizations and the SSA Form



Conditions on SSA Forms

Condition 1 in the previous slide is recursive.
It implies that φ-assignments introduced by the translation
procedure will also qualify as assignments to v
This in turn may lead to introduction of more φ-assignments
at other nodes

It would be wasteful to place φ-functions in all join nodes
It is possible to locate the nodes where φ-functions are
essential
This is captured by the dominance frontier

Y.N. Srikant Program Optimizations and the SSA Form



DF Example - 1

Y.N. Srikant Program Optimizations and the SSA Form



DF Example - 2

Y.N. Srikant Program Optimizations and the SSA Form



DF Algorithm

{
for all nodes n in the flow graph do
DF (n) = ∅;
for all nodes n in the flow graph do {
/* It is enough to consider only join nodes */
/* Other nodes automatically get their DF sets /*
/* computed during this process /*

for each predecessor p of n in the flow graph do {
t = p;
while (t 6= idom(n)) do {

DF (t) = DF (t) ∪ {n};
t = idom(t);

}
}

}
}

Y.N. Srikant Program Optimizations and the SSA Form



Minimal SSA Form Construction 1

1 Compute DF sets for each node of the flow graph
2 For each variable v , place trivial φ-functions in the nodes of

the flow graph using the algorithm place-phi-function(v)
3 Rename variables using the algorithm

Rename-variables(x,B)

φ-Placement Algorithm
The φ-placement algorithm picks the nodes ni with
assignments to a variable
It places trivial φ-functions in all the nodes which are in
DF (ni), for each i
It uses a work list (i.e., queue) for this purpose

Y.N. Srikant Program Optimizations and the SSA Form



φ-function placement Example

Y.N. Srikant Program Optimizations and the SSA Form



The function place-phi-function(v) - 1

function Place-phi-function(v ) // v is a variable
// This function is executed once for each variable in the flow graph
begin

// has-phi(B) is true if a φ-function has already
// been placed in B
// processed(B) is true if B has already been processed once
// for variable v
for all nodes B in the flow graph do

has-phi(B) = false; processed(B) = false;
end for
W = ∅; // W is the work list
// Assignment-nodes(v ) is the set of nodes containing
// statements assigning to v
for all nodes B ∈ Assignment-nodes(v ) do

processed(B) = true; Add(W ,B);
end for

Y.N. Srikant Program Optimizations and the SSA Form



The function place-phi-function(v) - 2

while W 6= ∅ do
begin

B = Remove(W );
for all nodes y ∈ DF (B) do

if (not has-phi(y )) then
begin

place < v = φ(v , v , ..., v) > in y ;
has-phi(y ) = true;
if (not processed(y )) then
begin processed(y ) = true;

Add(W , y );
end

end
end for

end
end

Y.N. Srikant Program Optimizations and the SSA Form



SSA Form Construction Example - 1

Y.N. Srikant Program Optimizations and the SSA Form



SSA Form Construction Example - 2

Y.N. Srikant Program Optimizations and the SSA Form



Minimal SSA Form Construction 2

Renaming Algorithm
The renaming algorithm performs a top-down traversal of
the dominator tree
A separate pair of version stack and version counter are
used for each variable

The top element of the version stack V is always the
version to be used for a variable usage encountered (in the
appropriate range, of course)
The counter v is used to generate a new version number

The alogorithm shown later is for a single variable only; a
similar algorithm is executed for all variables with an array
of version stacks and counters

Y.N. Srikant Program Optimizations and the SSA Form



The Renaming Algorithm

An SSA form should satisfy the dominance property:
the definition of a variable dominates each use or
when the use is in a φ-function, the predecessor of the use

Therefore, it is apt that the renaming algorithm performs a
top-down traversal of the dominator tree

Renaming for non-φ-statements is carried out while visiting
a node n
Renaming parameters of a φ-statement in a node n is
carried out while visiting the appropriate predecessors of n

Y.N. Srikant Program Optimizations and the SSA Form



The function Rename-variables(x,B)

function Rename-variables(x ,B) // x is a variable and B is a block
begin

ve = Top(V ); // V is the version stack of x
for all statements s ∈ B do

if s is a non-φ statement then
replace all uses of x in the RHS(s) with Top(V );

if s defines x then
begin

replace x with xv in its definition; push xv onto V ;
// xv is the renamed version of x in this definition
v = v + 1; // v is the version number counter

end
end for

Y.N. Srikant Program Optimizations and the SSA Form



The function Rename-variables(x,B)

for all successors s of B in the flow graph do
j = predecessor index of B with respect to s
for all φ-functions f in s which define x do

replace the j th operand of f with Top(V );
end for

end for
for all children c of B in the dominator tree do

Rename-variables(x , c);
end for
repeat Pop(V ); until (Top(V ) == ve);

end
begin // calling program

for all variables x in the flow graph do
V = ∅; v = 1; push 0 onto V ; // end-of-stack marker
Rename-variables(x ,Start);

end for
end

Y.N. Srikant Program Optimizations and the SSA Form



Renaming Variables Example 0.1

Y.N. Srikant Program Optimizations and the SSA Form



Renaming Variables Example 0.2

Y.N. Srikant Program Optimizations and the SSA Form



Renaming Variables Example 0.3

Y.N. Srikant Program Optimizations and the SSA Form



Renaming Variables Example 0.4

Y.N. Srikant Program Optimizations and the SSA Form



Renaming Variables Example 0.5

Y.N. Srikant Program Optimizations and the SSA Form



Renaming Variables Example 0.6

Y.N. Srikant Program Optimizations and the SSA Form



Renaming Variables Example 0.7

Y.N. Srikant Program Optimizations and the SSA Form



Renaming Variables Example 0.8

Y.N. Srikant Program Optimizations and the SSA Form



Translation to Machine Code - 1

Y.N. Srikant Program Optimizations and the SSA Form



Translation to Machine Code - 2

Y.N. Srikant Program Optimizations and the SSA Form



Translation to Machine Code - 3

The parameters of all φ-functions in a basic block are supposed
to be read concurrently before any other evaluation begins

Y.N. Srikant Program Optimizations and the SSA Form



Optimization Algorithms with SSA Forms

Dead-code elimination
Very simple, since there is exactly one definition reaching
each use
Examine the du-chain of each variable to see if its use list is
empty
Remove such variables and their definition statements
If a statement such as x = y + z or x = φ(y1, y2) is deleted,
care must be taken to remove the deleted statement from
the du-chains of y1 and y2

Simple constant propagation
Copy propagation
Conditional constant propagation and constant folding
Global value numbering

Y.N. Srikant Program Optimizations and the SSA Form



Simple Constant Propagation

{ Stmtpile = {S|S is a statement in the program}
while Stmtpile is not empty {

S = remove(Stmtpile);
if S is of the form x = φ(c, c, ..., c) for some constant c

replace S by x = c
if S is of the form x = c for some constant c

delete S from the program
for all statements T in the du-chain of x do

substitute c for x in T
Stmtpile = Stmtpile ∪ {T}

}

Copy propagation is similar to constant propagation
A single-argument φ-function, x = φ(y), or a copy
statement, x = y can be deleted and y substituted for
every use of x

Y.N. Srikant Program Optimizations and the SSA Form



The Constant Propagation Framework - An Overview

m(y) m(z) m′(x)

UNDEF UNDEF

UNDEF c2 UNDEF

NAC NAC

UNDEF UNDEF

c1 c2 c1 + c2

NAC NAC

UNDEF NAC

NAC c2 NAC

NAC NAC

Y.N. Srikant Program Optimizations and the SSA Form



Conditional Constant Propagation - 1

SSA forms along with extra edges corresponding to d-u
information are used here

Edge from every definition to each of its uses in the SSA
form (called henceforth as SSA edges)

Uses both flow graph and SSA edges and maintains two
different work-lists, one for each (Flowpile and SSApile ,
resp.)
Flow graph edges are used to keep track of reachable
code and SSA edges help in propagation of values
Flow graph edges are added to Flowpile, whenever a
branch node is symbolically executed or whenever an
assignment node has a single successor

Y.N. Srikant Program Optimizations and the SSA Form



Conditional Constant Propagation - 2

SSA edges coming out of a node are added to the SSA
work-list whenever there is a change in the value of the
assigned variable at the node
This ensures that all uses of a definition are processed
whenever a definition changes its lattice value.
This algorithm needs only one lattice cell per variable
(globally, not on a per node basis) and two lattice cells per
node to store expression values
Conditional expressions at branch nodes are evaluated
and depending on the value, either one of outgoing edges
(corresponding to true or false) or both edges
(corresponding to ⊥) are added to the worklist
However, at any join node, the meet operation considers
only those predecessors which are marked executable.

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example - 1

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example 1 - Trace 1

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example 1 - Trace 2

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example 1 - Trace 3

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example 2

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example 2 - Trace 1

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example 2 - Trace 2

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example 2 - Trace 3

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example 2 - Trace 4

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example 2 - Trace 5

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example 2 - Trace 6

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example 2 - Trace 7

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example 2 - Trace 8

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example 2 - Trace 9

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example 2 - Trace 10

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example 2 - Trace 11

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example 2 - Trace 12

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example 2 - Trace 13

Y.N. Srikant Program Optimizations and the SSA Form


