The Static Single Assignment Form: Construction and Application to Program Optimizations - Part 2

Y.N. Srikant

Department of Computer Science Indian Institute of Science Bangalore 560 012

NPTEL Course on Compiler Design

・ロト ・ 理 ト ・ ヨ ト ・

-

- A program is in SSA form, if each use of a variable is reached by exactly one definition
- Flow control remains the same as in the non-SSA form
- A special merge operator, φ, is used for selection of values in join nodes
- Not every join node needs a ϕ operator for every variable
- Often, the SSA form is augmented with *u-d* and *d-u* chains to facilitate design of faster algorithms
- Translation from SSA to machine code introduces copy operations, which may introduce some inefficiency

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Program 3 in non-SSA and SSA Form

=

After translation, the SSA form should satisfy the following conditions for every variable v in the original program.

- If two non-null paths from nodes X and Y each having a definition of v converge at a node p, then p contains a trivial ϕ -function of the form $v = \phi(v, v, ..., v)$, with the number of arguments equal to the in-degree of p.
- Each appearance of *v* in the original program or a φ-function in the new program has been replaced by a new variable *v_i*, leaving the new program in SSA form.
- Any use of a variable v along any control path in the original program and the corresponding use of v_i in the new program yield the same value for both v and v_i.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- Condition 1 in the previous slide is recursive.
 - It implies that φ-assignments introduced by the translation procedure will also qualify as assignments to v
 - This in turn may lead to introduction of more φ-assignments at other nodes
- It would be wasteful to place ϕ -functions in all join nodes
- It is possible to locate the nodes where φ-functions are essential
- This is captured by the *dominance frontier*

イロト 不得 とくほ とくほ とうほ

DF Example - 1

DF Example - 2

Y.N. Srikant Program Optimizations and the SSA Form

DF Algorithm

for all nodes *n* in the flow graph do $DF(n) = \emptyset;$ for all nodes *n* in the flow graph do { /* It is enough to consider only join nodes */ /* Other nodes automatically get their DF sets /* /* computed during this process /* for each predecessor p of n in the flow graph do { t = p;while $(t \neq idom(n))$ do { $DF(t) = DF(t) \cup \{n\};$

t = idom(t);

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Compute DF sets for each node of the flow graph
- For each variable v, place trivial \u03c6-functions in the nodes of the flow graph using the algorithm place-phi-function(v)
- Rename variables using the algorithm Rename-variables(x,B)
- ϕ -Placement Algorithm
 - The φ-placement algorithm picks the nodes n_i with assignments to a variable
 - It places trivial φ-functions in all the nodes which are in DF(n_i), for each i
 - It uses a work list (i.e., queue) for this purpose

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

ϕ -function placement Example

The function *place-phi-function(v)* - 1

function *Place-phi-function*(v) // v is a variable

// This function is executed once for each variable in the flow graph begin

// has-phi(B) is true if a ϕ -function has already

// been placed in B

// processed(B) is true if B has already been processed once

// for variable v

for all nodes B in the flow graph do

has-phi(B) = false; processed(B) = false;end for

 $W = \emptyset$; // W is the work list

// Assignment-nodes(v) is the set of nodes containing

// statements assigning to v

for all nodes $B \in Assignment-nodes(v)$ do

processed(B) = true; Add(W, B);

end for

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

The function place-phi-function(v) - 2

```
while W \neq \emptyset do
  begin
    B = Remove(W);
    for all nodes y \in DF(B) do
      if (not has-phi(y)) then
      begin
        place \langle v = \phi(v, v, ..., v) \rangle in y;
        has-phi(y) = true;
        if (not processed(y)) then
        begin processed(y) = true;
            Add(W, y);
        end
      end
    end for
  end
end
```

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

SSA Form Construction Example - 1

SSA Form Construction Example - 2

Program Optimizations and the SSA Form

Renaming Algorithm

- The renaming algorithm performs a top-down traversal of the dominator tree
- A separate pair of version stack and version counter are used for each variable
 - The top element of the version stack *V* is always the version to be used for a variable usage encountered (in the appropriate range, of course)
 - The counter *v* is used to generate a new version number
- The alogorithm shown later is for a single variable only; a similar algorithm is executed for all variables with an array of version stacks and counters

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- An SSA form should satisfy the *dominance property*:
 - the definition of a variable dominates each use or
 - when the use is in a ϕ -function, the predecessor of the use
- Therefore, it is apt that the renaming algorithm performs a top-down traversal of the dominator tree
 - Renaming for non- ϕ -statements is carried out while visiting a node *n*
 - Renaming parameters of a *φ*-statement in a node *n* is carried out while visiting the appropriate predecessors of *n*

イロン 不良 とくほう イロン 二日

function *Rename-variables*(x, B) // x is a variable and B is a block begin

 $v_e = Top(V); // V$ is the version stack of x

for all statements $s \in B$ do

if s is a non- ϕ statement then

replace all uses of x in the RHS(s) with Top(V);

if s defines x then

begin

replace x with x_v in its definition; push x_v onto V; // x_v is the renamed version of x in this definition v = v + 1; // v is the version number counter end

end for

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ → 目 → のへで

The function *Rename-variables(x,B)*

for all successors *s* of *B* in the flow graph do j = predecessor index of *B* with respect to *s* for all ϕ -functions *f* in *s* which define *x* do replace the *j*th operand of *f* with *Top*(*V*); end for

end for

for all children c of B in the dominator tree do

```
Rename-variables(x, c);
```

end for

```
repeat Pop(V); until (Top(V) == v_e);
```

end

begin // calling program

for all variables x in the flow graph do

 $V = \emptyset$; v = 1; push 0 onto V; // end-of-stack marker

Rename-variables(x, Start);

end for

end

イロト 不得 とくほ とくほ とうほ

Translation to Machine Code - 1

Translation to Machine Code - 2

Y.N. Srikant Program Optimizations and the SSA Form

=

Translation to Machine Code - 3

The parameters of all ϕ -functions in a basic block are supposed to be read concurrently before any other evaluation begins

Optimization Algorithms with SSA Forms

- Dead-code elimination
 - Very simple, since there is exactly one definition reaching each use
 - Examine the *du-chain* of each variable to see if its use list is empty
 - Remove such variables and their definition statements
 - If a statement such as x = y + z or x = φ(y₁, y₂) is deleted, care must be taken to remove the deleted statement from the *du-chains* of y₁ and y₂
- Simple constant propagation
- Copy propagation
- Conditional constant propagation and constant folding
- Global value numbering

・ロット (雪) (き) (き) (き)

Simple Constant Propagation

```
{ Stmtpile = {S|S is a statement in the program}

while Stmtpile is not empty {

S = remove(Stmtpile);

if S is of the form x = \phi(c, c, ..., c) for some constant c

replace S by x = c

if S is of the form x = c for some constant c

delete S from the program

for all statements T in the du-chain of x do

substitute c for x in T

Stmtpile = Stmtpile \cup {T}
```

Copy propagation is similar to constant propagation

 A single-argument φ-function, x = φ(y), or a copy statement, x = y can be deleted and y substituted for every use of x

The Constant Propagation Framework - An Overview

m(y)	<i>m</i> (<i>z</i>)	<i>m</i> ′(<i>x</i>)
UNDEF	UNDEF	UNDEF
	<i>c</i> ₂	UNDEF
	NAC	NAC
c ₁	UNDEF	UNDEF
	<i>c</i> ₂	$c_1 + c_2$
	NAC	NAC
NAC	UNDEF	NAC
	c ₂	NAC
	NAC	NAC

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Y.N. Srikant Program Optimizations and the SSA Form

Conditional Constant Propagation - 1

- SSA forms along with extra edges corresponding to *d-u* information are used here
 - Edge from every definition to each of its uses in the SSA form (called henceforth as *SSA edges*)
- Uses both flow graph and SSA edges and maintains two different work-lists, one for each (*Flowpile* and *SSApile*, resp.)
- Flow graph edges are used to keep track of reachable code and SSA edges help in propagation of values
- Flow graph edges are added to *Flowpile*, whenever a branch node is symbolically executed or whenever an assignment node has a single successor

イロン 不良 とくほう イロン 二日

Conditional Constant Propagation - 2

- SSA edges coming out of a node are added to the SSA work-list whenever there is a change in the value of the assigned variable at the node
- This ensures that all *uses* of a definition are processed whenever a definition changes its lattice value.
- This algorithm needs only one lattice cell per *variable* (globally, not on a per node basis) and two lattice cells per node to store expression values
- Conditional expressions at branch nodes are evaluated and depending on the value, either one of outgoing edges (corresponding to *true* or *false*) or both edges (corresponding to ⊥) are added to the worklist
- However, at any join node, the *meet* operation considers only those predecessors which are marked *executable*.

ヘロン 人間 とくほ とくほ とう

CCP Algorithm - Example - 1

Y.N. Srikant

Program Optimizations and the SSA Form

Y.N. Srikant

Program Optimizations and the SSA Form

.≡ →

CCP Algorithm - Example 2

Y.N. Srikant Program Optimizations and the SSA Form

Y.N. Srikant Program Optimizations and the SSA Form

=

Y.N. Srikant Program Optimizations and the SSA Form

Y.N. Srikant Program Optimizations and the SSA Form

=

Y.N. Srikant Program Optimizations and the SSA Form

Y.N. Srikant Program Optimizations and the SSA Form

Y.N. Srikant Program Optimizations and the SSA Form

After second round of simplification – elimination of dead code, elimination of trivial Φ-functions, copy propagation etc.