
The Static Single Assignment Form:
Construction and Application to Program Optimizations

- Part 3

Y.N. Srikant

Department of Computer Science
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Compiler Design

Y.N. Srikant Program Optimizations and the SSA Form



Program 3 in non-SSA and SSA Form

Y.N. Srikant Program Optimizations and the SSA Form



Optimization Algorithms with SSA Forms

Dead-code elimination
Very simple, since there is exactly one definition reaching
each use
Examine the du-chain of each variable to see if its use list is
empty
Remove such variables and their definition statements
If a statement such as x = y + z or x = φ(y1, y2) is deleted,
care must be taken to remove the deleted statement from
the du-chains of y1 and y2

Simple constant propagation
Copy propagation
Conditional constant propagation and constant folding
Global value numbering

Y.N. Srikant Program Optimizations and the SSA Form



Simple Constant Propagation

{ Stmtpile = {S|S is a statement in the program}
while Stmtpile is not empty {

S = remove(Stmtpile);
if S is of the form x = φ(c, c, ..., c) for some constant c

replace S by x = c
if S is of the form x = c for some constant c

delete S from the program
for all statements T in the du-chain of x do

substitute c for x in T
Stmtpile = Stmtpile ∪ {T}

}

Copy propagation is similar to constant propagation
A single-argument φ-function, x = φ(y), or a copy
statement, x = y can be deleted and y substituted for
every use of x

Y.N. Srikant Program Optimizations and the SSA Form



The Constant Propagation Framework - An Overview

m(y) m(z) m′(x)

UNDEF UNDEF

UNDEF c2 UNDEF

NAC NAC

UNDEF UNDEF

c1 c2 c1 + c2

NAC NAC

UNDEF NAC

NAC c2 NAC

NAC NAC

Y.N. Srikant Program Optimizations and the SSA Form



Conditional Constant Propagation - 1

SSA forms along with extra edges corresponding to d-u
information are used here

Edge from every definition to each of its uses in the SSA
form (called henceforth as SSA edges)

Uses both flow graph and SSA edges and maintains two
different work-lists, one for each (Flowpile and SSApile ,
resp.)
Flow graph edges are used to keep track of reachable
code and SSA edges help in propagation of values
Flow graph edges are added to Flowpile, whenever a
branch node is symbolically executed or whenever an
assignment node has a single successor

Y.N. Srikant Program Optimizations and the SSA Form



Conditional Constant Propagation - 2

SSA edges coming out of a node are added to the SSA
work-list whenever there is a change in the value of the
assigned variable at the node
This ensures that all uses of a definition are processed
whenever a definition changes its lattice value.
This algorithm needs only one lattice cell per variable
(globally, not on a per node basis) and two lattice cells per
node to store expression values
Conditional expressions at branch nodes are evaluated
and depending on the value, either one of outgoing edges
(corresponding to true or false) or both edges
(corresponding to ⊥) are added to the worklist
However, at any join node, the meet operation considers
only those predecessors which are marked executable.

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Contd.

// G = (N ,Ef ,Es) is the SSA graph,
// with flow edges and SSA edges, and
// V is the set of variables used in the SSA graph
begin

Flowpile = {(Start → n) | (Start → n) ∈ Ef };
SSApile = ∅;
for all e ∈ Ef do e.executable = false; end for
v .cell is the lattice cell associated with the variable v
for all v ∈ V do v .cell = >; end for
// y .oldval and y .newval store the lattice values
// of expressions at node y
for all y ∈ N do

y .oldval = >; y .newval = >;
end for

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Contd.

while (Flowpile 6= ∅) or (SSApile 6= ∅) do
begin

if (Flowpile 6= ∅) then
begin

(x , y ) = remove(Flowpile);
if (not (x , y ).executable) then
begin

(x , y ).executable = true;
if (φ-present(y )) then visit-φ(y )

else if (first-time-visit(y )) then visit-expr (y );
// visit-expr is called on y only on the first visit
// to y through a flow edge; subsequently, it is called
// on y on visits through SSA edges only
if (flow-outdegree(y ) == 1) then

// Only one successor flow edge for y
Flowpile = Flowpile ∪ {(y , z) | (y , z) ∈ Ef };

end
Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Contd.

// if the edge is already marked, then do nothing
end
if (SSApile 6= ∅) then

begin
(x , y ) = remove(SSApile);
if (φ-present(y )) then visit-φ(y )

else if (already -visited(y )) then visit-expr (y );
// A false returned by already -visited implies
// that y is not yet reachable through flow edges

end
end // Both piles are empty

end
function φ-present(y ) // y ∈ N
begin

if y is a φ-node then return true
else return false

end
Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Contd.

function visit-φ(y ) // y ∈ N
begin

y .newval = >; //‖y .instruction.inputs‖ is the number of
// parameters of the φ-instruction at node y
for i = 1 to ‖y .instruction.inputs‖ do

Let pi be the i th predecessor of y ;
if ((pi , y ).executable) then
begin

Let ai = y .instruction.inputs[i];
// ai is the i th input and ai .cell is the lattice cell
// associated with that variable
y .newval = y .newval u ai .cell ;

end
end for

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Contd.

if (y .newval < y .instruction.output .cell) then
begin

y .instruction.output .cell = y .newval ;
SSApile = SSApile ∪ {(y , z) | (y , z) ∈ Es };

end
end

function already -visited(y ) // y ∈ N
// This function is called when processing an SSA edge
begin // Check in-coming flow graph edges of y

for all e ∈ {(x , y ) | (x , y )∈ Ef }
if e.executable is true for at least one edge e

then return true else return false
end for

end

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Contd.

function first-time-visit(y ) // y ∈ N
// This function is called when processing a flow graph edge
begin // Check in-coming flow graph edges of y

for all e ∈ {(x , y ) | (x , y )∈ Ef }
if e.executable is true for more than one edge e

then return false else return true
end for
// At least one in-coming edge will have executable true
// because the edge through which node y is entered is
// marked as executable before calling this function

end

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Contd.

function visit-expr (y ) // y ∈ N
begin

Let input1 = y .instruction.inputs[1];
Let input2 = y .instruction.inputs[2];
if (input1.cell == ⊥ or input2.cell == ⊥) then

y .newval = ⊥
else if (input1.cell == > or input2.cell == >) then

y .newval = >
else // evaluate expression at y as per lattice evaluation rules

y .newval = evaluate(y );
It is easy to handle instructions with one operand

if y is an assignment node then
if (y .newval < y .instruction.output .cell) then
begin

y .instruction.output .cell = y .newval ;
SSApile = SSApile ∪ {(y , z) | (y , z) ∈ Es };

end
Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Contd.

else if y is a branch node then
begin

if (y .newval < y .oldval) then
begin

y .oldval = y .newval ;
switch(y .newval)

case ⊥: // Both true and false branches are equally likely
Flowpile = Flowpile ∪ {(y , z) | (y , z) ∈ Ef };

case true: Flowpile = Flowpile ∪ {(y , z) | (y , z) ∈ Ef and
(y , z) is the true branch edge at y };

case false: Flowpile = Flowpile ∪ {(y , z) | (y , z) ∈ Ef and
(y , z) is the false branch edge at y };

end switch
end

end
end

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example - 1

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example 1 - Trace 1

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example 1 - Trace 2

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example 1 - Trace 3

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example 2

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example 2 - Trace 1

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example 2 - Trace 2

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example 2 - Trace 3

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example 2 - Trace 4

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example 2 - Trace 5

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example 2 - Trace 6

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example 2 - Trace 7

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example 2 - Trace 8

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example 2 - Trace 9

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example 2 - Trace 10

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example 2 - Trace 11

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example 2 - Trace 12

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example 2 - Trace 13

Y.N. Srikant Program Optimizations and the SSA Form



Value Numbering with SSA Forms

Global value numbering scheme
Similar to the scheme with extended basic blocks
Scope of the tables is over the dominator tree
Therefore more redundancies can be caught (e.g.,
expressions in block B8, such as d1 = u1 + v1, which are
equivalent to a1 in block B1)

No d-u or u-d edges needed
Uses reverse post order on the DFS tree of the SSA graph
to process the dominator tree

This ensures that definitions are processed before use

Back edges make the algorithm find fewer equivalences
(more on this later)
Scoped HashTable (scope over the dominator tree)

For example, an assignment a10 = u1 + v1 in block B9 (if
present) can use the value of the expression u1 + v1 of
block B1, since B1 is a dominator of B9

Y.N. Srikant Program Optimizations and the SSA Form



Value Numbering with SSA Forms

Variable names are not reused in SSA forms
Hence, no need to restore old entries in the scoped
HashTable when the processing of a block is completed
Just deleting new entries will be sufficient

Any copies generated because of common subexpressions
can be deleted immediately
Copy propagation is carried out during value-numbering
Ex: Copy statements generated due to value numbering in
blocks B2, B4, B5, B6, B7, and B8 can be deleted
The ValnumTable stores the SSA name and its value
number and is global; it is not scoped over the dominator
tree (reasons next slide)
Value numbering transformation retains the dominance
property of the SSA form

Every definition dominates all its uses or predecessors of
uses (in case of phi-functions)

Y.N. Srikant Program Optimizations and the SSA Form



Example: An SSA Form

Y.N. Srikant Program Optimizations and the SSA Form



Dominator Tree and Reverse Post order

Y.N. Srikant Program Optimizations and the SSA Form



Global Unscoped ValnumTable

Needed for φ-instructions
A φ-instruction receives inputs from several variables along
different predecessors of a block
These inputs are defined in the immediate predecessors or
dominators of the predecessors of the current block
They may be defined in any block that has a control path to
the current block
For example, while processing block B9, we need
definitions of a5,a6, and a3

a5,a6: defined in the predecessor block, B6, and
a3: defined in the dominator of the predecessor of B9, i.e.,
B3

However, each incoming arc corresponds to exactly one
parameter of the φ-instruction
Hence we need an unscoped ValnumTable

Y.N. Srikant Program Optimizations and the SSA Form



HashTable and ValnumTable

Y.N. Srikant Program Optimizations and the SSA Form



SSA Value-numbering Example - 1.0

Y.N. Srikant Program Optimizations and the SSA Form



SSA Value-numbering Example - 1.1

Y.N. Srikant Program Optimizations and the SSA Form



SSA Value-numbering Example - 1.2

Y.N. Srikant Program Optimizations and the SSA Form



SSA Value-numbering Example - 1.3

Y.N. Srikant Program Optimizations and the SSA Form



SSA Value-numbering Example - 1.4

Y.N. Srikant Program Optimizations and the SSA Form



SSA Value-numbering Example - 1.5

Y.N. Srikant Program Optimizations and the SSA Form



SSA Value-numbering Example - 1.6

Y.N. Srikant Program Optimizations and the SSA Form



SSA Value-numbering Example - 1.7

Y.N. Srikant Program Optimizations and the SSA Form



SSA Value-numbering Example - 1.8

Y.N. Srikant Program Optimizations and the SSA Form



SSA Value-numbering Example - 1.9

Y.N. Srikant Program Optimizations and the SSA Form



SSA Value-numbering Example - 1.10

Y.N. Srikant Program Optimizations and the SSA Form



SSA Value-Numbering Algorithm

function SSA-Value-Numbering (Block B) {
Mark the beginning of a new scope;
For each φ-function f of the form x = φ(y1, ..., yn) in B do {

search for f in HashTable;
//This involves getting the value numbers of the parameters also
if f is meaningless //all yi are equivalent to some w

replace value number of x by that of w in ValnumTable;
delete f ;

else if f is redundant and is equivalent to z = φ(u1, ...,un)
replace value number of x by that of z in ValnumTable;
delete f ;

else insert simplified f into HashTable and ValnumTable;
}

Y.N. Srikant Program Optimizations and the SSA Form



SSA Value-Numbering Algorithm - Contd.

For each assignment a of the form x = y + z in B do {
search for y + z in HashTable;
//This involved getting value numbers of y and z also
If present with value number n

replace value number of x by n in ValnumTable;
delete a;

else add simplified y + z to HashTable and x to ValnumTable;
}
For each child c of B in the dominator tree do
//in reverse postorder of DFS over the SSA graph

SSA-Value-Numbering(c);
clean up HashTable after leaving this scope;

}

//Calling program
SSA-Value-Numbering(Start);

Y.N. Srikant Program Optimizations and the SSA Form



Processing φ-instructions

Some times, one or more of the inputs of a φ-instruction
may not yet be defined

They may reach through the back edge of a loop
Such entries will not be found in the ValnumTable
For example, see a7 and c4 in the φ-functions in block B3
(next slide); their equivalence would not have been decided
by the time B3 is processed
Simply assign a new value number to the φ-instruction and
record it in the ValnumTable and the HashTable along with
the new value number and the defining variable

If all the inputs are found in the ValnumTable
Replace the inputs by the respective entries in the
ValnumTable
Now, check whether the φ-instruction is either meaningless
or redundant
If neither, enter the simplified expression into the tables as
before

Y.N. Srikant Program Optimizations and the SSA Form



Example: Effect of Back Edge on Value Numbering

Y.N. Srikant Program Optimizations and the SSA Form



Processing φ-instructions
Meaningless φ-instruction

All inputs are identical. For example, see block B8

It can be deleted and all occurences of the defining variable can
be replaced by the input parameter. ValnumTable is updated

Redundant φ-instruction

There is another φ-instruction in the same basic block with
exactly the same parameters

Block B9 has a redundant φ-instruction

Another φ-instruction from a dominating block cannot be used
because the control conditions may be different for the two
blocks and hence the two φ-instructions may yield different
values at runtime

HashTable can be used to check redundancy

A redundant φ-instruction can be deleted and all occurences of
the defining variable in the redundant instruction can be
replaced by the earlier non-redundant one. Tables are updated

Y.N. Srikant Program Optimizations and the SSA Form



Liveness Analysis with SSA Forms

For each variable v , walk backwards from each use of v ,
stopping when the walk reaches the definition of v
Collect the block numbers on the way, and the variable v is
live at the entry/exit (one or both, as the case may be) of
each of these blocks
In the example (next slide), consider uses of the variable i2
in B7 and B4. Traversing upwards till B2, we get: B7, B5,
B6, B3, B4(IN and OUT points), and OUT[B2], as blocks
where i2 is live
This procedure works because the SSA forms and the
transformations we have discussed satisfy (preserve) the
dominance property

the definition of a variable dominates each use or the
predecessor of the use (when the use is in a φ-function)
Otherwise, the whole SSA graph may have to be searched
for the corresponding definition

Y.N. Srikant Program Optimizations and the SSA Form



Liveness Analysis with SSA Forms - Example

Y.N. Srikant Program Optimizations and the SSA Form


