
Automatic Parallelization - Part 1

Y.N. Srikant

Department of Computer Science
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Compiler Design

Y.N. Srikant Automatic Parallelization



Automatic Parallelization

Automatic conversion of sequential programs to parallel
programs by a compiler
Target may be a vector processor (vectorization), a
multi-core processor (concurrentization), or a cluster of
loosely coupled distributed memory processors
(parallelization)
Parallelism extraction process is normally a
source-to-source transformation
Requires dependence analysis to determine the
dependence between statements
Implementation of available parallelism is also a challenge

For example, can all the iterations of a 2-nested loop be run
in parallel?

Y.N. Srikant Automatic Parallelization



Example 1

for I = 1 to 100 do {
X(I) = X(I) + Y(I)

}

can be converted to

X(1:100) = X(1:100) + Y(1:100)

The above code can be run on a vector processor in O(1) time.
The vectors X and Y are fetched first and then the vector X is
written into

Y.N. Srikant Automatic Parallelization



Example 2

for I = 1 to 100 do {
X(I) = X(I) + Y(I)

}

can be converted to

forall I = 1 to 100 do {
X(I) = X(I) + Y(I)

The above code can be run on a multi-core processor with all
the 100 iterations running as separate threads. Each thread
“owns” a different I value

Y.N. Srikant Automatic Parallelization



Example 3

for I = 1 to 100 do {
X(I+1) = X(I) + Y(I)

}

cannot be converted to

X(2:101) = X(1:100) + Y(1:100)

because of dependence as shown below

X(2) = X(1) + Y(1)
X(3) = X(2) + Y(2)
X(4) = X(3) + Y(3)
...

Y.N. Srikant Automatic Parallelization



Transformations before Dependence Analysis

Array subscripts should be linear functions of loop
variables
Loop lower bound should be one and the loop increment
should be one
A few loop transformations are carried out to ensure the
above

Loop normalization
Induction variable substitution
Expression folding and forward substitution

Y.N. Srikant Automatic Parallelization



Loop Normalization

Loop lower bound→ 1, and loop increment→ 1

Y.N. Srikant Automatic Parallelization



Induction Variable Substitution

for I = 1 to 100 do {
KI = I
for J = 1 to 100 do {
U(3*J-2) = U(3*J-2)*W(KI+2*J)
V(3*J+1) = V(3*J-2)*W(KI+2*J)

}
KI = KI+200
J = 301

}

Now KI is a constant in the J-loop. This is the inverse of
operator strength reduction

Y.N. Srikant Automatic Parallelization



Expression Folding and Forward Substitution

for I = 1 to 100 do {
for J = 1 to 100 do {
S1: U(3*J-2) = U(3*J-2)*W(I+2*J)
S2: V(3*J+1) = V(3*J-2)*W(I+2*J)

}
KI = I+200 // may be deleted if KI is not live
J = 301 // may be deleted if J is not live

}

Now all subscripts are linear functions of loop variables as
needed for the dependence analysis.

Y.N. Srikant Automatic Parallelization



Vector Code Generation

I = 1, J = 1, S1: U(1) = U(1) + ...
S2: V(4) = V(1) + ...

J = 2, S1: U(2) = U(2) + ...
S2: V(7) = V(4) + ...

The dependence S1 δ(=,=)S1 is harmless for vectorization
of S1
But, the dependence S2 δ(=,<)S2 prevents vectorization of
S2

for I = 1 to 100 do {
U(1:298:3) = U(1:298:3)*W(I-2:I+200:2)

for J = 1 to 100 do {
V(3*J+1) = V(3*J-2)*W(I+2*J)

}
}

Y.N. Srikant Automatic Parallelization



Data Dependence Relations

Y.N. Srikant Automatic Parallelization



Data Dependence Direction Vector

Forward or “<” direction means dependence from iteration i
to i + k (i.e., computed in iteration i and used in iteration
i + k )
Backward or “>” direction means dependence from
iteration i to i − k (i.e., computed in iteration i and used in
iteration i − k ). This is not possible in single loops and
possible in doubly or higher levels of nesting
Equal or “=” direction means that dependence is in the
same iteration (i.e., computed in iteration i and used in
iteration i)

Y.N. Srikant Automatic Parallelization



Data Dependence Graph and Vectorization

Individual nodes are statements of the program and edges
depict data dependence among the statements
If the DDG is acyclic, then vectorization of the program is
straightforward

Vector code generation can be done using a topological
sort order on the DDG

Otherwise, find all the strongly connected components of
the DDG, and reduce the DDG to an acyclic graph by
treating each SCC as a single node

SCCs cannot be fully vectorized; the final code will contain
some sequential loops and possibly some vector code

Y.N. Srikant Automatic Parallelization



Data Dependence Graph and Vectorization

Any dependence with a forward (<) direction in an outer
loop will be satisfied by the serial execution of the outer
loop
If an outer loop L is run in sequential mode, then all the
dependences with a forward (<) direction at the outer level
(of L) will be automatically satisfied (even those of the
loops inner to L)
However, this is not true for those dependences with with
(=) direction at the outer level; the dependences of the
inner loops will have to be satisfied by appropriate
statement ordering and loop execution order

Y.N. Srikant Automatic Parallelization



Vectorization Example 1

Y.N. Srikant Automatic Parallelization



Vectorization Example 2.1

Y.N. Srikant Automatic Parallelization



Vectorization Example 2.2

Y.N. Srikant Automatic Parallelization



Vectorization Example 2.3

Y.N. Srikant Automatic Parallelization



Vectorization Example 2.4

Y.N. Srikant Automatic Parallelization



Vectorization Example 2.5

Y.N. Srikant Automatic Parallelization



Vectorization Example 3.1

Y.N. Srikant Automatic Parallelization



Vectorization Example 3.2

Y.N. Srikant Automatic Parallelization



Vectorization Example 3.3

Y.N. Srikant Automatic Parallelization


