
Automatic Parallelization - Part 2

Y.N. Srikant

Department of Computer Science
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Compiler Design

Y.N. Srikant Automatic Parallelization



Automatic Parallelization

Automatic conversion of sequential programs to parallel
programs by a compiler
Target may be a vector processor (vectorization), a
multi-core processor (concurrentization), or a cluster of
loosely coupled distributed memory processors
(parallelization)
Parallelism extraction process is normally a
source-to-source transformation
Requires dependence analysis to determine the
dependence between statements
Implementation of available parallelism is also a challenge

For example, can all the iterations of a 2-nested loop be run
in parallel?

Y.N. Srikant Automatic Parallelization



Data Dependence Relations

Y.N. Srikant Automatic Parallelization



Data Dependence Direction Vector

Forward or “<” direction means dependence from iteration i
to i + k (i.e., computed in iteration i and used in iteration
i + k )
Backward or “>” direction means dependence from
iteration i to i − k (i.e., computed in iteration i and used in
iteration i − k ). This is not possible in single loops and
possible in doubly or higher levels of nesting
Equal or “=” direction means that dependence is in the
same iteration (i.e., computed in iteration i and used in
iteration i)

Y.N. Srikant Automatic Parallelization



Data Dependence Graph and Vectorization

Individual nodes are statements of the program and edges
depict data dependence among the statements
If the DDG is acyclic, then vectorization of the program is
straightforward

Vector code generation can be done using a topological
sort order on the DDG

Otherwise, find all the strongly connected components of
the DDG, and reduce the DDG to an acyclic graph by
treating each SCC as a single node

SCCs cannot be fully vectorized; the final code will contain
some sequential loops and possibly some vector code

Y.N. Srikant Automatic Parallelization



Vectorization Example 3.1

Y.N. Srikant Automatic Parallelization



Vectorization Example 3.2

Y.N. Srikant Automatic Parallelization



Vectorization Example 3.3

Y.N. Srikant Automatic Parallelization



Data Dependence Direction Vector

Data dependence relations are augmented with a direction
of data dependence which is expressed as a direction
vector
There is one direction vector component for each loop in a
nest of loops
The data dependence direction vector (or direction vector)
is Ψ = (Ψ1,Ψ2, ...,Ψd ), where Ψk ∈ {<,=, >,≤,≥, 6=, ∗}
We say SvδΨ1,...,Ψd Sw (or SvδΨSw ), when

1 there exist particular instances of Sv and Sw , say,
Sv [i1, ..., id ] and Sw [j1, ..., jd ], such that
Sv [i1, ..., id ]δSw [j1, ..., jd ], and

2 θ(ik )Ψkθ(jk ), for 1 ≤ k ≤ d
θ(ik ) < θ(jk ) only when iteration ik is executed before
iteration jk
θ(ik ) = θ(jk ) only when ik = jk
θ(ik ) > θ(jk ) only when iteration ik is executed after
iteration jk

Y.N. Srikant Automatic Parallelization



Data Dependence Direction Vector

The function θ(Ik ) = Ik , when the loop increment is positive
and θ(Ik ) = −Ik , when the loop increment is negative,
satisfies the above requirements
Forward or “<” direction means dependence from iteration i
to i + k (i.e., computed in iteration i and used in iteration
i + k )
Backward or “>” direction means dependence from
iteration i to i − k (i.e., computed in iteration i and used in
iteration i − k ). This is not possible in single loops and
possible in doubly or higher levels of nesting
Equal or “=” direction means that dependence is in the
same iteration (i.e., computed in iteration i and used in
iteration i)
“*” is used when the direction is unknown or when all three
of <,=, > apply

Y.N. Srikant Automatic Parallelization



Direction Vector Example 1

Y.N. Srikant Automatic Parallelization



Direction Vector Example 2

Y.N. Srikant Automatic Parallelization



Direction Vector Example 3

Y.N. Srikant Automatic Parallelization



Direction Vector Example 4

Y.N. Srikant Automatic Parallelization



Direction Vector Example 5.1

Y.N. Srikant Automatic Parallelization



Direction Vector Example 5.2

Y.N. Srikant Automatic Parallelization



Execution Order Dependence and Direction Vector

Sv ΘSw if Sv can be exeuted before Sw (in the normal
execution of the program)
SvδΨSw only if Sv ΘΨSw

i.e., Θ may hold but δ may not hold
Example:

S1: a=b+c S1 ΘS2, S2 ΘS3, and S1 ΘS3
S2: a=c+d are all true, but S1 δS2 and S1 δS3
S3: e=a+f are false; only S2 δS3 is true

Hence execution ordering is weaker
Execution order direction vector is similar to the data
dependence direction vector (similar definition)
Not all direction vectors are possible
We will now consider legal exec order d.v. by looking at the
syntax of constructs

Y.N. Srikant Automatic Parallelization



Single Loop Legal Direction Vectors - 1

S1 Θ(≤)S2, S2 Θ(<)S1, S1 Θ(<)S1, and S2 Θ(<)S2 are all
possible
Note that S2 Θ(=)S1 is not possible because S2 comes
after S1 in lexical ordering

Y.N. Srikant Automatic Parallelization



Single Loop Legal Direction Vectors - 2

S1 Θ(=)S2 and S2 Θ(=)S1 cannot happen
S1 Θ(<)S2, S2 Θ(<)S1, S1 Θ(<)S1, and S2 Θ(<)S2 are all
possible

Y.N. Srikant Automatic Parallelization



Multi-Loop Legal Direction Vectors - 1

Loop 1
S1 Θ(=,≤)S2, S2 Θ(=,<)S1, S1 Θ(<,∗)S2, S2 Θ(<,∗)S1,
S1 Θ(<,∗)S1, and S2 Θ(<,∗)S2 are all possible
S2 Θ(=,=)S1 and S1 Θ(=,>)S2 are not possible

Y.N. Srikant Automatic Parallelization



Multi-Loop Legal Direction Vectors - 2

Loop 2
S1 Θ(=,<)S2, S1 Θ(<,∗)S2, S2 Θ(=,<)S1, and S2 Θ(<,∗)S1
are all possible
S2 Θ(=,=)S1 and S1 Θ(=,=)S2 are not possible

Y.N. Srikant Automatic Parallelization



Data Dependence Equation

Given a program segment such as:
for I1 = L1 to U1 by N1 do {
. . .

for Id = Ld to Ud by Nd do {
Sv : . . . X (. . . , f (I1, ..., Id ), ...) . . .
Sw : . . . X (. . . , g(I1, ..., Id ), ...) . . .

}
. . .

}

Y.N. Srikant Automatic Parallelization



Data Dependence Equation

Suppose that I = (I1, ..., Id ), andf (I) and g(I) are given by

f (I) = A0 +
d∑

k=1

Ak Ik

g(I) = B0 +
d∑

k=1

Bk Ik

We try to find solutions i and j for I that satisfy the
dependence equation

f (i) = g(j)

such that the DV is also satisfied

θ(ik ) Ψk θ(jk )

Y.N. Srikant Automatic Parallelization



Data Dependence Equation

If we use a normalized index In
k instead of Ik , where

Ik = In
k Nk + Lk

In
k satisfies the inequality 0 ≤ In

k ≤ (Uk − Lk )/Nk and has
increment one
The dependence equations now become

f n(In) = A0 +
d∑

k=1

AkNk In
k +

d∑
k=1

AkLk

gn(In) = B0 +
d∑

k=1

BkNk In
k +

d∑
k=1

BkLk

Finding solutions in and jn for In to the normalized
equations is equivalent to finding solutions to the original
equation

Y.N. Srikant Automatic Parallelization



The GCD Test - 1

The dependence equation

A1x1 + ...+ Anxn − B1y1 − ...− Bnyn = B0 − A0

has a solution if and only if
GCD(A1, A2, ..., Ad , B1, B2, ..., Bd ) divides B0 − A0

The GCD test is quick but not very effective in practice
The GCD test indicates dependence whenever the
dependence equation has a solution anywhere, not
necessarily within the region imposed by the loop bounds

Y.N. Srikant Automatic Parallelization


