Automatic Parallelization - Part 2

Y.N. Srikant

Department of Computer Science Indian Institute of Science Bangalore 560 012

NPTEL Course on Compiler Design

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

- Automatic conversion of sequential programs to parallel programs by a compiler
- Target may be a vector processor (vectorization), a multi-core processor (concurrentization), or a cluster of loosely coupled distributed memory processors (parallelization)
- Parallelism extraction process is normally a source-to-source transformation
- Requires dependence analysis to determine the dependence between statements
- Implementation of available parallelism is also a challenge
 - For example, can all the iterations of a 2-nested loop be run in parallel?

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Data Dependence Relations

- Forward or "<" direction means dependence from iteration *i* to *i* + *k* (*i.e.*, computed in iteration *i* and used in iteration *i* + *k*)
- Backward or ">" direction means dependence from iteration *i* to *i* - *k* (*i.e.*, computed in iteration *i* and used in iteration *i* - *k*). This is not possible in single loops and possible in doubly or higher levels of nesting
- Equal or "=" direction means that dependence is in the same iteration (*i.e.*, computed in iteration *i* and used in iteration *i*)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Data Dependence Graph and Vectorization

- Individual nodes are statements of the program and edges depict data dependence among the statements
- If the DDG is acyclic, then vectorization of the program is straightforward
 - Vector code generation can be done using a topological sort order on the DDG
- Otherwise, find all the strongly connected components of the DDG, and reduce the DDG to an acyclic graph by treating each SCC as a single node
 - SCCs cannot be fully vectorized; the final code will contain some sequential loops and possibly some vector code

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Vectorization Example 3.1

for I = 1 to 100 do { code for S2, S3, S4

S1: X(1:100) = Y(1:100) + 10

generated at higher levels

Vectorization Example 3.2

.= >

Vectorization Example 3.3

Level 3 DDG for the composite node S2S3

くつわえ くさん くちん

=

Data Dependence Direction Vector

- Data dependence relations are augmented with a direction of data dependence which is expressed as a direction vector
- There is one direction vector component for each loop in a nest of loops
- The data dependence direction vector (or direction vector) is $\Psi = (\Psi_1, \Psi_2, ..., \Psi_d)$, where $\Psi_k \in \{<, =, >, \le, \ge, \neq, *\}$
- We say $S_V \delta_{\Psi_1,...,\Psi_d} S_W$ (or $S_V \delta_{\Psi} S_W$), when
 - there exist particular instances of S_v and S_w, say, S_v[i₁,...,i_d] and S_w[j₁,...,j_d], such that S_v[i₁,...,i_d]δS_w[j₁,...,j_d], and
 θ(i_k)Ψ_kθ(j_k), for 1 ≤ k ≤ d
- θ(i_k) < θ(j_k) only when iteration i_k is executed before iteration j_k
- $\theta(i_k) = \theta(j_k)$ only when $i_k = j_k$
- θ(i_k) > θ(j_k) only when iteration i_k is executed after iteration j_k

Data Dependence Direction Vector

- The function $\theta(I_k) = I_k$, when the loop increment is positive and $\theta(I_k) = -I_k$, when the loop increment is negative, satisfies the above requirements
- Forward or "<" direction means dependence from iteration *i* to *i* + *k* (*i.e.*, computed in iteration *i* and used in iteration *i* + *k*)
- Backward or ">" direction means dependence from iteration *i* to *i* - *k* (*i.e.*, computed in iteration *i* and used in iteration *i* - *k*). This is not possible in single loops and possible in doubly or higher levels of nesting
- Equal or "=" direction means that dependence is in the same iteration (*i.e.*, computed in iteration *i* and used in iteration *i*)
- "*" is used when the direction is unknown or when all three of <, =, > apply

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ つへの

for | = 1 to 100 do { X(1) = X(1) + cSō₋S S: X(I) = X(I) + cX(2) = X(2)+cł for | = 1 to 99 do { X(2) = X(1) + cSδ₂S S: X(|+1) = X(|) + cX(3) = X(2)+cfor | = 1 to 99 do { X(1) = X(2) + cS $\overline{\delta}_{z}$ S S: X(I) = X(I+1) + cX(2) = X(3)+cfor J = 99 downto 1 do { X(99) = X(100) + cS: X(J) = X(J+1) + cSδ,S X(98) = X(99) + cnote '-ve' increment for | = 2 to 101 do { X(2) = X(1) + cSδ₂S S: X(|) = X(|-1) + cX(3) = X(2)+c

(白戸) くさり くさり

for I = 1 to 5 do { for | = 1 to 4 do { **S1** S1: A(I, I) = B(I, I) + C(I, I)B(I, J+1) = A(I, J) + B(I, J)S2: δ_(=,<) δ(=,=) **S**2 Demonstration of δ_(=,<) direction vector I=1, I=1: A(1,1)=B(1,1)+C(1,1) $\begin{array}{c} S1 \\ B(1,2) = B(1,1) + C(1,1) \\ B(1,2) = B(1,2) + C(1,2) \\ \end{array} \begin{array}{c} S1 \\ \delta_{(=,=)} S2 \\ S2 \\ \delta_{(=,<)} S1 \\ \end{array}$ I=2: A(1,2)=B(1,2)+C(1,2)B(1,3)=A(1,2)+B(1,2)S2 δ_(= <)S2 J=3: A(1,3)=B(1,3)+C(1,3)B(1,4)=A(1,3)+B(1,3)

(m) > < z > < z >

$$\begin{array}{c} S1 \ \overline{\delta}_{(<,>)} \ S2 \\ \hline for \ I = 1 \ to \ N \ do \ \{ \\ for \ J = 1 \ to \ N \ do \ \{ \\ S1: \ A(I+1, \ J) = \dots \\ S2: \ \dots = A(I, \ J+1) \\ \ \} \\ \end{array} \qquad \begin{array}{c} I = 1, \ J = 2 \\ S1: \ A(2,2) = \dots \\ I = 2, \ J = 1 \\ S2: \ \dots = A(2,2) \end{array}$$

for I = 1 to N do { for J = 1 to N do { S1: ... = A(I, J+1) S2: A(I+1, J) = ... } I = 1, J = 2 S2: A(2,2) = ... I = 2, J = 1 S1: ... = A(2,2)

Y.N. Srikant

Automatic Parallelization

く 向き トーイ ヨ トー・

Y.N. Srikant Automatic Parallelization

Y.N. Srikant

Automatic Parallelization

Execution Order Dependence and Direction Vector

- S_v⊖S_w if S_v can be exeuted before S_w (in the normal execution of the program)
- $S_{\nu}\delta_{\Psi}S_{w}$ only if $S_{\nu}\Theta_{\Psi}S_{w}$
- *i.e.*, Θ may hold but δ may not hold
- Example:

S1: a=b+c	S1 Θ S2, S2 Θ S3, and S1 Θ S3
S2: a=c+d	are all true, but S1 δ S2 and S1 δ S3
S3: e=a+f	are false; only S2 δ S3 is true

- Hence execution ordering is weaker
- Execution order direction vector is similar to the data dependence direction vector (similar definition)
- Not all direction vectors are possible
- We will now consider legal exec order d.v. by looking at the syntax of constructs

Single Loop Legal Direction Vectors - 1

- S1 $\Theta_{(\leq)}$ S2, S2 $\Theta_{(<)}$ S1, S1 $\Theta_{(<)}$ S1, and S2 $\Theta_{(<)}$ S2 are all possible
- Note that S2 ⊖₍₌₎S1 is not possible because S2 comes after S1 in lexical ordering

Single Loop Legal Direction Vectors - 2

S1 Θ₍₌₎S2 and S2 Θ₍₌₎S1 cannot happen
 S1 Θ_(<)S2, S2 Θ_(<)S1, S1 Θ_(<)S1, and S2 Θ_(<)S2 are all possible

l = 1 S1

| = 2

1 = 3

| = 4

S2

S2

S1

for I = L to U o	} ot
if () then S1: else S2: endif	
,	

S1 and S2 may be in any order, but both S1 and S2 cannot occur together in any iteration

Multi-Loop Legal Direction Vectors - 1

Loop 1

•
$$S1 \ \Theta_{(=,\leq)}S2$$
, $S2 \ \Theta_{(=,<)}S1$, $S1 \ \Theta_{(<,*)}S2$, $S2 \ \Theta_{(<,*)}S1$,
 $S1 \ \Theta_{(<,*)}S1$, and $S2 \ \Theta_{(<,*)}S2$ are all possible
• $S2 \ \Theta_{(=,=)}S1$ and $S1 \ \Theta_{(=,>)}S2$ are not possible

Multi-Loop Legal Direction Vectors - 2

Loop 2

- S1 $\Theta_{(=,<)}S2,$ S1 $\Theta_{(<,*)}S2,$ S2 $\Theta_{(=,<)}S1,$ and S2 $\Theta_{(<,*)}S1$ are all possible
- S2 $\Theta_{(=,=)}S1$ and S1 $\Theta_{(=,=)}S2$ are not possible

Loop 2

for I = LI to UI do { for J = LJ to UJ do { if () then	I = 1 J = 1 S1 J = 2 S2
S1:	l = 2
else	J = 1 S2
S2:	J = 2 S1
end if	
l 1	1 = 3
	J=1 S1
}	J = 2 S2

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Data Dependence Equation

• Suppose that $\overline{I} = (I_1, ..., I_d)$, and $f(\overline{I})$ and $g(\overline{I})$ are given by

$$f(\bar{I}) = A_0 + \sum_{k=1}^d A_k I_k$$
$$g(\bar{I}) = B_0 + \sum_{k=1}^d B_k I_k$$

 We try to find solutions *i* and *j* for *l* that satisfy the dependence equation

$$f(\bar{i}) = g(\bar{j})$$

such that the DV is also satisfied

$$\theta(i_k) \quad \Psi_k \quad \theta(j_k)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Data Dependence Equation

• If we use a normalized index I_k^n instead of I_k , where

$$I_k = I_k^n N_k + L_k$$

- I_k^n satisfies the inequality $0 \le I_k^n \le (U_k L_k)/N_k$ and has increment one
- The dependence equations now become

$$f^{n}(\overline{I^{n}}) = A_{0} + \sum_{k=1}^{d} A_{k} N_{k} I_{k}^{n} + \sum_{k=1}^{d} A_{k} L_{k}$$
$$g^{n}(\overline{I^{n}}) = B_{0} + \sum_{k=1}^{d} B_{k} N_{k} I_{k}^{n} + \sum_{k=1}^{d} B_{k} L_{k}$$

 Finding solutions *in* and *jn* for *In* to the normalized equations is equivalent to finding solutions to the original equation • The dependence equation

$$A_1x_1 + ... + A_nx_n - B_1y_1 - ... - B_ny_n = B_0 - A_0$$

has a solution if and only if $GCD(A_1, A_2, ..., A_d, B_1, B_2, ..., B_d)$ divides $B_0 - A_0$

- The GCD test is quick but not very effective in practice
- The GCD test indicates dependence whenever the dependence equation has a solution anywhere, not necessarily within the region imposed by the loop bounds

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○