Automatic Parallelization - Part 2

Y.N. Srikant

Department of Computer Science
Indian Institute of Science
Bangalore 560 012

NPTEL Course on Compiler Design

Y.N. Srikant Automatic Parallelization

Automatic Parallelization

@ Automatic conversion of sequential programs to parallel
programs by a compiler

@ Target may be a vector processor (vectorization), a
multi-core processor (concurrentization), or a cluster of
loosely coupled distributed memory processors
(parallelization)

@ Parallelism extraction process is normally a
source-to-source transformation

@ Requires dependence analysis to determine the
dependence between statements

@ Implementation of available parallelism is also a challenge

e For example, can all the iterations of a 2-nested loop be run
in parallel?

Y.N. Srikant Automatic Parallelization

Data Dependence Relations

S1:
Flow or true
dependence

S2:

S1:
Anti- l
dependence

§2: X=

S1: X=
Output l
dependence

§2: X=

Y.N. Srikant Automatic Parallelization

Data Dependence Direction Vector

@ Forward or “<” direction means dependence from iteration i
to i + k (i.e., computed in iteration i and used in iteration
i+ K)

@ Backward or “>” direction means dependence from
iteration i to i — k (i.e., computed in iteration / and used in
iteration / — k). This is not possible in single loops and
possible in doubly or higher levels of nesting

@ Equal or “=” direction means that dependence is in the
same iteration (i.e., computed in iteration / and used in
iteration /)

Y.N. Srikant Automatic Parallelization

Data Dependence Graph and Vectorization

@ Individual nodes are statements of the program and edges
depict data dependence among the statements
e If the DDG is acyclic, then vectorization of the program is
straightforward
e Vector code generation can be done using a topological
sort order on the DDG
@ Otherwise, find all the strongly connected components of
the DDG, and reduce the DDG to an acyclic graph by
treating each SCC as a single node
@ SCCs cannot be fully vectorized; the final code will contain
some sequential loops and possibly some vector code

Y.N. Srikant Automatic Parallelization

Vectorization Example 3.1

S1:

S2:

S3:

S4:

forl=1to 100do{

XHh=YM+ 10
for) =11to 100 do{
B() = AUN)

for K=11to 100 do {
A(J+1,K) =B() + C(, K)
H
Y(+)) = AJ+1, N)
}
}

S1:

forl=1to 100do {
code for S2, S3, S4 .
generated at higher levels

}
X(1:100) = Y(1:100) + 10 @

Y.N. Srikant Automatic Parallelization

Vectorization Example 3.2

S4:

forl=1to100do{
forJ=11t0o 100 do {
code for S2 and S3
generated at
higher levels

}
}

Y(+1:1+100) = A(2:101, N)

S1: X(1:100) = Y(1:100) + N

Y.N. Srikant

Level 2 DDG for the composite
node 528354

Automatic Parallelization

Vectorization Example 3.3

forl=1to100do{
forJ]=1to 100 do {
S2: B()) = A(J,N)
S3: A(J+1, 1:100) = B(J) + C(J, 1:100)
}
S4: Y({+1:1+100) = A(2:101, N)
}
S1: X(1:100) = Y(1:100) + N

5.

Level 3 DDG for the
composite node 5253

Y.N. Srikant Automatic Parallelization

Data Dependence Direction Vector

Data dependence relations are augmented with a direction
of data dependence which is expressed as a direction
vector
There is one direction vector component for each loop in a
nest of loops
The data dependence direction vector (or direction vector)
isW = (Wq,Wy, ... ¥,), where Wy € {<, =, > <, > # }
We say Sydv,,...w,Sw (or SyéwSy), when
@ there exist particular instances of S, and S, say,
Svlit, ..., ig] and Sy[ji, ..., ja], such that
Sylit, ..., id]0Swljt, .- ja], and
Q 9(ik)\llk0(jk), for1 < k<d
8(ix) < 6(Jx) only when iteration i is executed before
iteration ji
Q(Ik) = 9(];() onIy when i, = jk
0(ix) > 6(jx) only when iteration ik is executed after
iteration ji

Y.N. Srikant Automatic Parallelization

Data Dependence Direction Vector

The function 6(/x) = I, when the loop increment is positive
and 6(lx) = —Ix, when the loop increment is negative,
satisfies the above requirements

Forward or “<” direction means dependence from iteration i
to i + k (i.e., computed in iteration i and used in iteration
i+ K)

Backward or “>” direction means dependence from
iteration i to i — k (i.e., computed in iteration / and used in
iteration i — k). This is not possible in single loops and
possible in doubly or higher levels of nesting

Equal or “=” direction means that dependence is in the
same iteration (i.e., computed in iteration / and used in
iteration i)

“*” is used when the direction is unknown or when all three
of <,=,> apply

Y.N. Srikant Automatic Parallelization

forJ]=1t0100do {
S: X)) =X() +c
}

forJ]=11to099do {
S: X({J+1) =X() +c
}

forJ=11to 99 do {
S: X)) = X(J+1) +c
}

for] =99 downto 1 do {
S: X(J) = X(J+1) +c
}

forJ]=21t0o 101 do {
S: X)) =X(-1) +c
}

Y.N. Srikant

Direction Vector Example 1

$5.S

$5.S

X(1) =X(1) +c
X(2) = X(2)+c

X(2) = X(1) +c
X(3) = X(2)+c

X(1) =X(2) +c
X(2) = X(3)+c

X(99) = X(100) +c
X(98) = X(99)+c
note ‘“ve’ increment

X(2) = X(1) +c
X{(3) = X(2)+c

Automatic Parallelization

Direction Vector Example 2

S1:
S2:

forl=1to5do{
for]=1to4 do{ °

A(lL D =B(l,) + C(,)
: B(, J+1) = A(l, D + B(,) N

}
)

Demonstration of
direction vector

I=1,J=1: A(LD=B(,1+COL,1) 4 g15__s2

B(1,2)=A(1,1)+B(1,1)
J=2: A(1,2)=B(1,2)+C(1,2) D 525481
B(1,3)=A(1,2)+B(1,2)
J=3: A(1,3)=B(1,3)+C(1,3))
B(1,4)=A(1,3)+B(1,3)

2 5. .,S2

Y.N. Srikant Automatic Parallelization

6(=,<)

Direction Vector Example 3

$13,,,S2
forl=1toNdo{ 1=1,J=2
forJ=1toNdo{ S1: A(2,2)=..
S1: A(+1,Jd)= ...
S2: .= A(l, J+1) 1=2,J=1
} S2: ...=A(22)
}
$2 5, ,,S1
forl=1toNdo{ 1=1,4=2
forJ=1toNdo{ S2: A(2,2)=..
S1: .= A(l, J+1)
S2: A(+1,Jd)=... 1=2,J=1
} S1: ..=A(2,2)
}
Y.N. Srikant Automatic Parallelization

Direction Vector Example 4

forl=11t0 100 do {
ford=1to 100 do {
for K=1to 100 do {

S1: X(l, J+1, K} = A{l, J, K} + 10
}
forL=11to 50 do {
52 Afl+1, J, L) =X{I, J, L) +&
}
}
}
=1 =2

AZ3L) = X(1,3,L)

™ -
il

J= ~ X(1,2,K) = A{1,1,K) | X(2,2,K) = A(2,1,K) <
5 " A2,1,L) =X(1,1,L) | A3,1,L) = X(2,1,L)

=< —-..__________.__—__'.

J=2 " A X(1,3,K) = A(1,2,K) | X(2,3,K) = A(2,2,K) 4~
7L A2, =%X(1,20) | A(3,2,L) = X(2,2L)
I NPl m =~ _ -

J=3 X(1,4,K) = A(1,3,K) | X(2.4,K) = A2,3,Ky4~

AB3L)=X23L)

'-—-_._.-

Y.N. Srikant

Automatic Parallelization

Direction Vector Example 5.1

forl=1to 100do{
S1: X(h=YM)+ 10
for) =11to 100 do{
s2: BUJ) = A(U;N)
for K=11to 100 do {
S3: A(+1, K) = B() + C(U, K)
H
S4: Y(+)) = AJ+1, N)
}
}

I=1, J=1 B(1) =... =1, J=1 - = A(1,N)

for k=... do 825,53 A(2,N) = ...)

.. =B(1) J=2 . =A(ZN) &4

J=2B(2) =... A[3,N) = ... -

fo(r }(= do = 1=2, J=1 ~ =A(LN) | 525,83

.= B(2) S35, 52 A@ZN) = ...

I=2, J=1 B(1) =... S35,
for k=... = A(2,N) ’

.= B(1 S45,__S3
) 1=3, J=1 A(Z,N)=... i

Y.N. Srikant Automatic Parallelization

Direction Vector Example 5.2

forl=1to 100do{
S1: X(h=YM)+ 10
for) =11to 100 do{
s2: BU) = AU,N)
for K=11to 100 do {
S3: AU+1, K) = BU) + CU, K)
H
S4: Y(+)) = AJ+1, N)
}
}
I=1, J=1 B(1) =... \ I=1,J=4 Y(5)=.. s4 5((30) s4
for k=... do I=4,J=1 Y(5)=.. i
R 845,81
J=2B(2) =... s25.,52 |19 =Y(5)
for k=... do
I=1,J=1,K=1 A(2,1)=...
1=2, J=1 B(1) =... K=2 A(2,2)=... 9 s38,._,53
for k=... 1=2,J=1,K=1 A(2,1)=... "
K=2 A(2,2)=...

Y.N. Srikant Automatic Parallelization

Execution Order Dependence and Direction Vector

e 5,08, if S, can be exeuted before S, (in the normal
execution of the program)

@ S,0ySy only if 5,0y Sy

@ i.e., © may hold but § may not hold

@ Example:

S1:a=b+c | S1 682, S2 ©S3, and S1 ©S3

S2: a=c+d | are all true, but S1 §S2 and S1 §S3
S3: e=a+f | are false; only S2 §S3 is true

@ Hence execution ordering is weaker

@ Execution order direction vector is similar to the data
dependence direction vector (similar definition)

@ Not all direction vectors are possible
@ We will now consider legal exec order d.v. by looking at the
syntax of constructs

Y.N. Srikant Automatic Parallelization

Single Loop Legal Direction Vectors - 1

@ 510982, 52951, 51 ©(S51,and 52 ©(52 are all
possible

@ Note that S2 ©_)S1 is not possible because S2 comes
after S1 in lexical ordering

foril=LtoUdo{ =
$1
S1: 2
=2
§2: &1
S2
}

Y.N. Srikant Automatic Parallelization

Single Loop Legal Direction Vectors - 2

@ 510952 and S2 ©_)S1 cannot happen
e S1 e(<)32, S2 6(<)S1, S1 @(<)S1, and S2 9(<)82 are all

possible
forl=LtoUdo{ 1=
$1 S1 and S2 may be
if (...) then =2 in any order, but
s1: .. S2 both S1 and S2
else =3 cannot occur
s2: .. S2 together in any
endif =4 iteration
} $1

Y.N. Srikant Automatic Parallelization

Multi-Loop Legal Direction Vectors - 1

Loop 1
e Si e(, <)82 S2 9(, <)S1 S 6(< *)82 S2 G)(< *)81
S10(.,)S1,and S2 ©. ,)S2 are all possible
@ 5209 _S1and S1 ©_ .)S2 are not possible

Loop 1 =1
J=1 $1
forl=Llto Uldo { s2
ford=LJtoUJdo{ J=2 s
S1: .. S2
=2
J=1 &1
s2: .. s2
} J=2 1
} s2

Y.N. Srikant Automatic Parallelization

Multi-Loop Legal Direction Vectors - 2

Loop 2
o S1 e(:7<)82, S1 ®(<,*)82, S2 9(:7<)S1, and S2 @(<7*)S1
are all possible
@ 5209 _S1and S1 ©_ _,S2 are not possible

Loop 2
forl=LltoUldo{ |=1J | st
f0fJ=LJtoUJdo{ J=2 8
if (...) then

S1: .. 1=2
else J=1 82
S2: .. J=2 s

end if 1=3
} J=1 s1
} J=2 82

Y.N. Srikant Automatic Parallelization

Data Dependence Equation

Given a program segment such as:
for i = L4y to U; by N; dO{

forly = Lgto Uy by Ny dO{

S, : e Xy F),)
Sw: X(, g(l1,,/d),)

Y.N. Srikant Automatic Parallelization

Data Dependence Equation

@ Suppose that I = (1, ..., ly), andf(/) and g(/) are given by

d
f() = Ao+ > Al
k=1
- d
a(l) = Bo + > Byl
k=1

@ We try to find solutions i/ and j for / that satisfy the
dependence equation

such that the DV is also satisfied
O(ik) Vi 0(jx)

Y.N. Srikant Automatic Parallelization

Data Dependence Equation

@ If we use a normalized index / instead of /s, where
I, = /,?Nk + Ly

o /! satisfies the inequality 0 < /! < (Ux — Lk)/Nk and has
increment one
@ The dependence equations now become

d d
f1(7) = Ao+ > AN+ ALk

k=1 k=1

d d
9" = By + ZBKNK/Q+ZBkLk

k=1 k=1

@ Finding solutions i” and ;" for /" to the normalized
equations is equivalent to finding solutions to the original
equation

Y.N. Srikant Automatic Parallelization

The GCD Test - 1

@ The dependence equation
Aixqy+ ...+ Apxy — B1y1 — . — Bnyn = By—-A

has a solution if and only if
GCD(A1, Ag, ceey Ad, B1, Bg, ceey Bd) divides Bo —Ao
@ The GCD test is quick but not very effective in practice

@ The GCD test indicates dependence whenever the
dependence equation has a solution anywhere, not
necessarily within the region imposed by the loop bounds

Y.N. Srikant Automatic Parallelization

