
Automatic Parallelization - Part 4

Y.N. Srikant

Department of Computer Science
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Compiler Design

Y.N. Srikant Automatic Parallelization



Data Dependence Framework

Given two array references (with s dimensions and nested
in loop nest of depth d):
Sv : X (f1(I1, ..., Id ), f2(I), ..., fs(I))
Sw : X (g1(I1, ..., Id ), g2(I), ...,gs(I))

We test for both Sv δ
∗Sw and Sw δ∗Sv simultaneously

The particular type of dependence (δ, δ, or δo) depends on
the position of references (lhs or rhs) and the direction of
dependence

We first test to see if the array regions accessed by the two
references intersect

Intersection will occur when the subscript functions are
equal simultaneously

f1(i1, ..., id ) = g1(j1, ..., jd )

f2(i1, ..., id ) = g2(j1, ..., jd )

...

fs(i1, ..., id ) = gs(j1, ..., jd )

The conditions of intersection consist of a direction vector
(Ψ1, ...,Ψd ) relating the indices:
i1 Ψ1j1, i2 Ψ2j2, ..., id Ψd jd

Y.N. Srikant Automatic Parallelization



Data Dependence Framework

Test for intersection with a DV (∗, ∗, ..., ∗)
If independence can be proven with this DV, then the
regions accessed by the two references are disjoint
Otherwise, one “*” in the DV is refined to “<”, “=”, and “>”,
and testing is continued with these three refined DV
Thus, testing is done by hierarchical expansion of one “*”
at a time
If independence can be proven at any point in the
hierarchy, then the DV beneath it need not be tested

Y.N. Srikant Automatic Parallelization



Complement and Product of Direction Vectors

Complement of a DV Ψ = (Ψ1, ...,Ψd ) is another DV
Ψ−1 = (Ψ−1

1 , ...,Ψ−1
d ), where each Ψ−1

k is computed from
Ψk as follows

Ψk < = > ≤ ≥ 6= ∗
Ψ−1

k > = < ≥ ≤ 6= ∗

Product of two DVs Ψ1 = (Ψ1
1, ...,Ψ

1
d ) and

Ψ2 = (Ψ2
1, ...,Ψ

2
d ) is defined to be

Ψ = (Ψ1, ...,Ψd ) = Ψ1 × Ψ2, where
Ψ1 = Ψ1

1 × Ψ2
1, Ψ2 = Ψ1

2 × Ψ2
2,..., Ψd = Ψ1

d × Ψ2
d ,

and × is defined on DV elements as follows
“·” means a null DV element

Y.N. Srikant Automatic Parallelization



Product of DV elements

Y.N. Srikant Automatic Parallelization



Data Dependence Framework

Compute product of different DV corresponding to various
subscripts to get one DV
Ψ = Ψ1 × Ψ2 × ... × Ψs

If this combination produces any “·” entries, then there is
no simultaneous intersection at all and so there can be no
dependence
To get the data dependence DV, we must intersect Ψ with
the execution order DV: Ψv→w = Ψ × Ωv→w

If this produces any “·” entries, there is no dependence
from Sv to Sw

Y.N. Srikant Automatic Parallelization



Data Dependence Framework

If all the entries are valid, we add the data dependence
relation: Sv δ

∗
v→w Sw to the DDG

The actual type of dependence (δ, δ, or δo) will depend on
the position of the references
To check dependence from Sw to Sv , we
compute: Ψw→v = Ψ−1 × Ωw→v

If all the entries are valid, we add the data dependence
relation: Sw δ∗w→v Sv to the DDG

Y.N. Srikant Automatic Parallelization



Data Dependence Framework Test Example - 2.1

Given program:

for I = 1 to 10 do {
for J = 1 to 10 do {

S1: A(I*10+J) = ...
S2: ... = A(I*10+J-1)

}
}

Dependence equation: 10I1 + J1 − 10I2 − J2 = −1
GCD Test with (*,*): GCD(10, 1, -10, -1) divides -1, which is
true and hence dependence exists. Now we need to apply
Banerjee’s test
LB∗I = −90 LB<

I = −90 LB=
I = 0 LB>

I = 10
UB∗I = 90 UB<

I = −10 UB=
I = 0 UB>

I = 90
LB∗J = −9 LB<

J = −9 LB=
J = 0 LB>

J = 1
UB∗J = 9 UB<

J = −1 UB=
J = 0 UB>

J = 9

Y.N. Srikant Automatic Parallelization



Data Dependence Framework Test Example - 2.2

Y.N. Srikant Automatic Parallelization



Data Dependence Framework Test Example - 2.3

The dependence test returns two DVs: (<,>) and (=,<)
There is only one subscript
Recall that S1 Θ(=,≤)S2, S2 Θ(=,<)S1, S1 Θ(<,∗)S2,
S2 Θ(<,∗)S1, are all possible
Intersect these with the execution order DVs
(<,>) × (<, ∗) = (<,>)
(=, <) × (=,≤) = (=, <)
Other products produce “·” values
Therefore we get: S1 δ(=,<)S2 and S1 δ(<,>)S2
There is no need to test S2 δ∗ S1, since not all entries are
“·”

Y.N. Srikant Automatic Parallelization



Concurrentization or Parallelization

If all the dependence relations in a loop nest have a
direction vector value of “=” for a loop, then the iterations of
that loop can be executed in parallel with no
synchronization between iterations
Any dependence with a forward (<) direction in an outer
loop will be satisfied by the serial execution of the outer
loop
If an outer loop L is run in sequential mode, then all the
dependences with a forward (<) direction at the outer level
(of L) will be automatically satisfied (even those of the
loops inner to L)
However, this is not true for those dependences with (=)
direction at the outer level; the dependences of the inner
loops will have to be satisfied by appropriate statement
ordering and loop execution order

Y.N. Srikant Automatic Parallelization



Concurrentization Examples

Y.N. Srikant Automatic Parallelization



Loop Transformations for increasing Parallelism

Recurrence breaking
Ignorable cycles
Scalar expansion
Scalar renaming
Node splitting
Threshold detection and index set splitting
If-conversion

Loop interchanging
Loop fission
Loop fusion

Y.N. Srikant Automatic Parallelization



Ignorable Cycles

Any single statement recurrence based on δ may be
ignored
The program:

for I = 2 to 100 do {
S: X(I-1) = F(X(I))

}

has the dependence S δ S, but it can be vectorized as
follows:
X(1:99) = F(X(2:100))

Y.N. Srikant Automatic Parallelization



Scalar Expansion

Y.N. Srikant Automatic Parallelization



Scalar Expansion is not always profitable

Y.N. Srikant Automatic Parallelization



Scalar Renaming

Y.N. Srikant Automatic Parallelization



Node Splitting

Node splitting can be used in breaking a cycle consisting
of an anti-dependence, but this introduces new temporary
arrays

Y.N. Srikant Automatic Parallelization



Thresholds

Y.N. Srikant Automatic Parallelization



If-Conversion

Y.N. Srikant Automatic Parallelization



Loop Interchange

For machines with vector instructions, loops can be
interchanged to find vector operations, if the original inner
loop cannot be vectorized
For multi-core and multi-processor machines, parallel outer
loops are preferred and loop interchange may help to make
this happen
Requirements for simple loop interchange

1 The loops L1 and L2 must be tightly nested (no statements
between loops)

2 The loop limits of L2 must be invariant in L1
3 There are no statements Sv and Sw (not necessarily

distinct) in L1 with a dependence Sv δ
∗
(<,>) Sw

Y.N. Srikant Automatic Parallelization



Loop Interchange for Vectorizability

Y.N. Srikant Automatic Parallelization



Loop Interchange for parallelizability

Y.N. Srikant Automatic Parallelization



Legal Loop Interchange

Y.N. Srikant Automatic Parallelization



Illegal Loop Interchange

Y.N. Srikant Automatic Parallelization



Legal but not beneficial Loop Interchange

Y.N. Srikant Automatic Parallelization



Loop Fission - Motivation

Y.N. Srikant Automatic Parallelization



Loop Fission Lemma

Lemma: If a loop L contains statements Sk and Sj , where
SK follows Sj in the loop and Sk δ

∗
< Sj , then loop fission

may not split the loop at any point between Sj and Sk

Loop fission may not be used to break a cycle of
dependence into separate loops

Y.N. Srikant Automatic Parallelization



Loop Fission: Legal and Illegal

Y.N. Srikant Automatic Parallelization



Conditions for Loop Fusion

Same index sets
Loops must be adjacent
No conditional branch (that exits) in either loop (unless the
conditions are identical)
I/O in both loops makes fusion illegal, but I/O in one of the
loops is permitted
Data dependence requirement (later)

Y.N. Srikant Automatic Parallelization



Same Index sets for loop fusion

Y.N. Srikant Automatic Parallelization



Illegal loop fusion

Y.N. Srikant Automatic Parallelization



Augmented Direction Vector

Let S1 be a statement enclosed in a loop L1 with index set
i, and let S2 be a statement enclosed in a loop L2 with
index set j, and let the two index sets be identical. Let X be
one of {δ, δ, δo} and let S1 X S2.
We define the augmented DV to be (?) where,
? ∈ {<,=, >} and we say S1 X (?) S2 when

1 there exist particular iterations of S1 and S2, say, S1(i ′)
and S2(j ′) with S1(i ′) X S2(j ′) and

2 i ′ ? j ′

Definition 1 above allows a DV to have positions for loops
that do not contain both S1 and S2
Lemma: Let L1 and L2 be loops as above. If there are any
statements Sj in L1 and Sk in L2 with Sj δ

∗(>) Sk , then
fusing the loops is illegal

Y.N. Srikant Automatic Parallelization



Augmented DV example

Y.N. Srikant Automatic Parallelization


