Automatic Parallelization - Part 4

Y.N. Srikant

Department of Computer Science
Indian Institute of Science
Bangalore 560 012

NPTEL Course on Compiler Design

Y.N. Srikant Automatic Parallelization

Data Dependence Framework

@ Given two array references (with s dimensions and nested
in loop nest of depth d):

Sy: X(f1(/17 o0y Id)v f2(/)i"'v fS(’))ﬁ
Sw: X(@1(h. s lg), g2o(1), ... gs(]))
o We test for both S, 6*S,, and S, §*S, simultaneously
e The particular type of dependence (6, 6, or 6°) depends on
the position of references (lhs or rhs) and the direction of
dependence
@ We first test to see if the array regions accessed by the two
references intersect
o Intersection will occur when the subscript functions are
equal simultaneously

f1(i1,...,id) = 91(/'17~~7/'d)
(it erla) = Golft,-s)a)

fs(ityoosia) = Gs(ft, o)

Y.N. Srikant Automatic Parallelization

Data Dependence Framework

@ Test for intersection with a DV (x, , ..., %)

@ If independence can be proven with this DV, then the
regions accessed by the two references are disjoint

@ Otherwise, one “*” in the DV is refined to “<”, “=”, and “>”
and testing is continued with these three reflned DV

@ Thus, testing is done by hierarchical expansion of one
at atime

@ If independence can be proven at any point in the
hierarchy, then the DV beneath it need not be tested

132

*"

/‘x\!

(<) (<:=) (<) =9 E3) G G A (62)

Y.N. Srikant Automatic Parallelization

Complement and Product of Direction Vectors

@ Complementofa DV ¥V = (WV4,...,Vy) is another DV

v = (v, .., v, where each W, is computed from
v, as follows
Wk | <=
K
Product of two DVs W' = (wl .. wl)and
w2 = (W2 .., ¥2)is defined to be
v = (\U1,...,Wd) = vl x \Uz,where
Uy o= Wl x W2 W, = W) ox WE L Wy = WX w2
and x is defined on DV elements as follows
“” means a null DV element

<
>

IV IA
IN|IV
NN

>
<

Y.N. Srikant Automatic Parallelization

Product of DV elements

X =[>[=s]z2 .
< < <
> > > >
< = < = <
> = > = 2 2
+ > < > #
* = > < 2 *

Y.N. Srikant

Automatic Parallelization

Data Dependence Framework

@ Compute product of different DV corresponding to various
subscripts to get one DV
UV =VY; x Uy x ... x Vg

@ If this combination produces any “.” entries, then there is
no simultaneous intersection at all and so there can be no
dependence

@ To get the data dependence DV, we must intersect ¥ with
the execution order DV: ¥, _,, = ¥V x Q,

@ If this produces any “” entries, there is no dependence
from S, to S,

Y.N. Srikant Automatic Parallelization

Data Dependence Framework

@ If all the entries are valid, we add the data dependence
relation: Sy, 6;_,, Sw to the DDG

@ The actual type of dependence (5, &, or §°) will depend on
the position of the references

@ To check dependence from S, to S, we

@ If all the entries are valid, we add the data dependence
relation: Sy J;,_,, Sy to the DDG

Y.N. Srikant Automatic Parallelization

Data Dependence Framework Test Example - 2.1

Given program:

for I =1 to 10 do {
for J =1 to 10 do {

S1: A(I*x10+J) = ...
S2: ... = A(I%*10+J-1)
}
}
@ Dependence equation: 10/; +J; — 10 — b = —1

@ GCD Test with (*,*): GCD(10, 1, -10, -1) divides -1, which is
true and hence dependence exists. Now we need to apply
Banerjee’s test

[Bf =-90 LBF=-90 LBf=0 LB =10
UBf =90 UBF=-10 UBF=0 UB; =90
LB = — LBy =-9 LB;=0 LBy =1
UB, =9 UB; =—-1 UB;=0 UB;=9

Y.N. Srikant Automatic Parallelization

Data Dependence Framework Test Example - 2.2

**)
LB '+ LB,"<B,- A, S UB "+ UB,"
99 <1599

(<" (=" ")
99<-1<41 9<-1<9 1£-1299

m/\

(<<) (<=) (<>) (=) (== (=)
99<-1<-11-90<1<10 89<-1<1 9<-41gq4 0150 15159

X X NN

Y.N. Srikant Automatic Parallelization

Data Dependence Framework Test Example - 2.3

@ The dependence test returns two DVs: (<,>) and (=,<)
@ There is only one subscript

@ Recall that S1 @(_ <)S2 S2 @(_ <)S1 St @(< *)S
S2 ©(+)S1, are all possible

@ Intersect these with the execution order DVs
(<,>) x (<, %) = (<,>)
(:v <) X (:a S) = (:7 <)
Other products produce “” values

@ Therefore we get: S1 46— .)S2and S1 §(. ~)S2

@ There is no need to test S2 §* S1, since not all entries are

Y.N. Srikant Automatic Parallelization

Concurrentization or Parallelization

@ If all the dependence relations in a loop nest have a
direction vector value of “=” for a loop, then the iterations of
that loop can be executed in parallel with no
synchronization between iterations

@ Any dependence with a forward (<) direction in an outer
loop will be satisfied by the serial execution of the outer
loop

@ |f an outer loop L is run in sequential mode, then all the
dependences with a forward (<) direction at the outer level
(of L) will be automatically satisfied (even those of the
loops inner to L)

@ However, this is not true for those dependences with (=)
direction at the outer level; the dependences of the inner
loops will have to be satisfied by appropriate statement
ordering and loop execution order

Y.N. Srikant Automatic Parallelization

Concurrentization Examples

S51:
52:

forl=2to N do {
ford=2toNdo{
A(lLJ)=B(lJ)+ 2
B(l,J) = A{l-1, J-1) - B{l,J)

}
}

$15, 82, 815,52, 525,52

S1:
52:
}
}

forl=2to N do {
ford=2toNdo{
A(l,J)=B(l,J) + 2
B{l,J) = A(l, J-1) = B{l,J)

$15 52, 815,52 825, 82

I=1 =2 I=1 =2
J=1 |A22= A3,2)= J=1 |A22)= A(3,2)=
=A({1,1) = A(2,1) =A(2,1) =A(3,1)
J=2 | A(23)= A(3,3)= J=2 |A(2,3)= A(3,3)=
=A(1,2) =A(2,2) = A(2,2) =A(3,2)
J =3 [Al24)F A34)= J =3 |A(24)= A(3,4)=
=A(1,3) =A(2,3) =A(2,3) =A(3,3)
If the | loop is run in serial mode then, The J lcop cannet be run in parallel
the J loop can be run in parallel mode mode. However, the | loop can be run

in parallel mode

Y.N. Srikant Automatic Parallelization

Loop Transformations for increasing Parallelism

@ Recurrence breaking

e Ignorable cycles
e Scalar expansion
e Scalar renaming
e Node splitting
e Threshold detection and index set splitting
e If-conversion

@ Loop interchanging
@ Loop fission
@ Loop fusion

Y.N. Srikant Automatic Parallelization

Ilgnorable Cycles

@ Any single statement recurrence based on § may be
ignored

@ The program:

for I = 2 to 100 do {
S: X(I-1) = F(X(1))
}

has the dependence S ¢ S, but it can be vectorized as
follows:
X(1:99) = F(X(2:100))

Y.N. Srikant Automatic Parallelization

Scalar Expansion

Not vectorizable or parallelizable

Cyclic DDG
forl=1toNdo {
S1: T=A(l)
S2: A(l) =B(l)
§3: B(h=T
}

Vectorizable due to
scalar expansion

Parallelizable due
to privatization

forl=1toNdo{
S1: Tx(l) = A(l)
82: A(l) =Bl
83: B(l)=Tx(l)

}

forallI=1toNdo{
private temp
S1: temp = Al(l)
S2: A(l)=B(l)
83: B(l) =temp
}

Acyclic DDG

Y.N. Srikant Automatic Parallelization

Scalar Expansion is not always profitable

Not vectorizable or parallelizable

forl=1toNdo {
S1: T=T+A(l)+A(+2)
S2: A(=T

Cyclic DDG

}

Not vectorizable even] .
after scalar expansion Still cyclic DDG

forl=1toNdo{
81: Tx(l) = Tx(I-1)+A(I)+A(I+2)
S2: A(l)=Tx(l)

}

Y.N. Srikant Automatic Parallelization

Scalar Renaming

The output dependence

51 8°83 cannot be broken

by scalar expansion

The output dependence
51 6°83 CAN be broken
by scalar renaming

forlI=1toNdo{

T1 = A(l) + B(l)
c) = T1*2

T2 = D(l) * B(l)
A(l+2) =T2 +5

5(1:100) and 2(1:100)
are vectors of constants

forl=1toNdo{
S1: T=A()+B(l) S1:
S2: C()=T*2 S2:
1.0 g3 1= D(1) * B(l) S3:
S4: A(+2)=T+5 S4:
} }
$3: T2(1:100) = D(1:100) * B(1:100)
3. |S4: A(3:102) = T2(1:100) + 5(1:100)
181 T1(1:100) = A(1:100) + B(1:100)
§2: C(1:100) = T1(1:100)*2(1:100)
T =T2(100)
Y.N. Srikant Automatic Parallelization

Node Splitting

@ Node splitting can be used in breaking a cycle consisting
of an anti-dependence, but this introduces new temporary

arrays

for =1 to 100 do { 5
S1: A(l) = X(H+1) + X(I)
s2: X(1+1) = B() e @ be remeved
} 3

for =1 to 100 do { 3
S0: T() = X(1+1) (i %
S1: A() =T(1) + X(1) e 5 @ 5 @
S2: X(1+1) = B(l)

This loop can be vectorized

g

S0: T(1:100) = X(2:101)
S2: X(2:101) = B(1:100)
S1: A(1:100) = T(1:100) + X(1:100)

Y.N. Srikant Automatic Parallelization

Thresholds

= Cannot be vectorized
fOI')|((—I+15;ZC; 1)(0(?) do { Threshold value =5
} Thresholds can be found by
modifications of Banjerjee’s
@ test
_ Cannot be vectorized
fo; I _J1 t1° 1:205ddo {{ Threshold value = 50
orJ= (o] (o]
X(I"5+J) = X(I*5+J-5) forl=1to 100 do {
} A(l) = A(101-1)
} }
forl=1to20do{ forJ=1to2do{
X(5*I+1 : 5*1+5) A(50*J — 49 : 50*J)
= X(5%1-4 : 5%I) = A(150 - 50*1 : 101-50*1)

Y.N. Srikant Automatic Parallelization

[f-Conversion

for I =1to 100 do { for1=1to Ndo{

if (A(l) <= 0) then contnue S1: A()=D(1) + 1

A(l)=B(l)+ 3 S2: if (B(l) > 0) then
} 53: c(l) = C(1) + A(l)

s4: D(1+1) = D{1+1) + 1
end if
}
i

forl =110 100 do { forl=1to Ndo{
BR(I) = (A(l) <= 0) s2: temp(1:N) = B(1:N) > 0
if (~ BR()) then S4: where (temp(1:N))
Ally=B(l)+3 D{2:N+1) = D{2:N+1) + 1
} s1: A(1:N) = D(1:N) + 1

$3: where (temp(1:N})
@ C{1:N) = C(1:N) + A(1:N)
}

BR(1:N) = {(A(1:N) <= 0) -
where (~ BR{1:N})
A(1:N)=B(1:N) + 3
T C_Jﬁ/

Y.N. Srikant Automatic Parallelization

Loop Interchange

@ For machines with vector instructions, loops can be
interchanged to find vector operations, if the original inner
loop cannot be vectorized

@ For multi-core and multi-processor machines, parallel outer
loops are preferred and loop interchange may help to make
this happen

@ Requirements for simple loop interchange

@ The loops L1 and L2 must be tightly nested (no statements
between loops)

@ The loop limits of L2 must be invariant in L1

© There are no statements S, and S,, (not necessarily

distinct) in L1 with a dependence S, 6?<,>) Sw

Y.N. Srikant Automatic Parallelization

Loop Interchange for Vectorizability

for1=1toNdo { Inner loop is not
ford=1toNdo{ vectorizable

S: A(l,J+1) = A(l,J) * B(l,J) + C(l,J
, (1,J+1) = A(l,J) * B(l,J) + C(l,J) S8, S

}

forJ=1toNdo{ Inner loop is
forl=1toNdo{ vectorizable

S: A(l,J+1) = A(l,J) * B(l,J) + C(l,J)
} S8<sS

}

ford=1toNdo{
S: A(1:N, J¥1) = A(1:N, J) * B(1:N, J) + C(1:N, J)
}

Y.N. Srikant Automatic Parallelization

Loop Interchange for parallelizability

for1=1toNdo { Quter loop is not
parallelizable, but

ford=1toNdo{ inner loop is

S: A(I+1,J) = A(l,YJ) * B(l,J) + C(I,J)
} $8.-S

} Less work per thread

forJ=1to N do { °'~'te|1 ':?°Pbi|5 bt
forl1=1toNdo { m::rfoz: isenol:

S A(+1,J) = A(l,J) * B(1,J) + C(1,J)
} $5.,S

} More work per thread

forall J=1to Ndo{
forl=1toNdo{

S: A(+1,J) = A(lLJ) * B(l,J) + C(l,J)
}

}

Y.N. Srikant Automatic Parallelization

Legal Loop Interchange

1
il el leog) """ ls:)
521 522 523 S$8.,5
(/ & N =<
1
% _____ @ _____ 7;33
dependence loop exec order loop exec order
——————————— _——

before interchange after interchange

Y.N. Srikant Automatic Parallelization

llegal Loop Interchange

dependence loop exec order loop exec order
_ o .

before interchange after interchange

Y.N. Srikant Automatic Parallelization

Legal but not beneficial Loop Interchange

dependence

loop exec

before inter

Y.N. Srikant

order

-

change

loop exec order
_—

after interchange

Automatic Parallelization

Loop Fission - Motivation

forl=1toNdo{
S1: Ally=E()+1

s22 B()=F()*2 @
S3: C(I+1) = C(I)* A(l) + D())
S4: D(I+1) = C(I+1) * B(I) + D(l)

}

\
7‘@ “ 6=
The above loop cannot be vectorized /

L1: forl=1toNdo{ \5<
s1: A()=E()+1 f
$2: B(=F()*2 [&,

} \ T

L2: forl=1toNdo{
§3: C(+1)=C(l) * A(l) + D(I)
S4: D(I+1) = C(1+1) * B(l) + D(I)
}

Vo
L1 can be vectorized, but L2 cannot be \/ 6<

Y.N. Srikant Automatic Parallelization

Loop Fission Lemma

@ Lemma: If aloop L contains statements Sk and S;, where
Sk follows S; in the loop and Sy % S;, then loop fission
may not split the loop at any point between S; and Sk

@ Loop fission may not be used to break a cycle of
dependence into separate loops

Y.N. Srikant Automatic Parallelization

Loop Fission: Legal and lllegal

5
forl=1toNdo { — -
S1: A()=D*T 5,
S2: B(l) = (C() + E(1))}2 @
S3: C(I+1) = A(l) + 1

}

In the above loop, $3 &, $2, and S3 follows $2. Therefore,
cutting the loop between $2 and S3 is illegal. However,
cutting the loop between S1 and 52 is legal.

forl=1toNdo {
S1: A(l+1) = B(l) +D(l)
§2: B(l) = (A(l) + B(l))/2
83: Cly=B()+1

}

5.

‘ The above loop can be cut between 51 and 52, and also between 52 and S3 ‘

Y.N. Srikant Automatic Parallelization

Conditions for Loop Fusion

@ Same index sets
@ Loops must be adjacent

@ No conditional branch (that exits) in either loop (unless the
conditions are identical)

@ /O in both loops makes fusion illegal, but I/0 in one of the
loops is permitted

@ Data dependence requirement (later)

Y.N. Srikant Automatic Parallelization

Same Index sets for loop fusion

LOOP 1

forl=1toNdo{
§1: A(l) =B(l) + C&{l)

}

LOOP 2

forl=2toNdo{
S§2: D(h=E(l)*2
}

Th

e above locops are not fusib

le

Option for LOOP 1

A(1)=B(1) + C(1)
forl=2toNdo{
S1: A(l) = B(l) + C(l)

}

Y.N. Srikant

Options for LOOP 2
Option A

forl=1toNdo{
S2: D(I+1) = E(+1)* 2
}

Option B
forlI=1toNdo{

§2. if(l>=2)
DIh=E()*2

Automatic Parallelization

lllegal loop fusion

forl=1toNdo{
S1: A(l)=B(l) + C(l)
5(>)
forl=1toNdo{
§2: B(+N)=D{)*2 @
}

If the two loops are fused,
then the dependences change!

forl=1toNdo{
S1: A(l) = B(l) + C(l)
§2: B(l+1)=D(l)* 2
}

A

(s1
o
©

Y.N. Srikant Automatic Parallelization

Augmented Direction Vector

@ Let S1 be a statement enclosed in a loop L1 with index set
i, and let S2 be a statement enclosed in a loop L2 with
index set j, and let the two index sets be identical. Let X be
one of {4, 9, 6°} and let S1 X S2.

@ We define the augmented DV to be (?) where,

7 € {<,=,>}and we say S1 X(?) S2 when
@ there exist particular iterations of S1 and S2, say, S1(/)
and S2(j') with S1(i") X S2(j') and
Q /7

@ Definition 1 above allows a DV to have positions for loops

that do not contain both S1 and S2

@ Lemma: Let L1 and L2 be loops as above. If there are any
statements S; in L1 and Sk in L2 with S; 6*(>) Sk, then
fusing the loops is illegal

Y.N. Srikant Automatic Parallelization

Augmented DV example

forl=2toNdo{
§1: Aly=D()*2
}

forl=2toNdo{
§2: B(l)=A(l)+1
}

forl=2toNdo{
$1: Ah=D()*2
}

forl=2toNdo{
S2: B(ly=A(l-1)+1
}

$18(=) $2

$10(<) 82

forl=2toNdo{
81: A(=D(l)* 2
}

forl=2toNdo{
§2: B(l) = A(l+1) +1
}

$16(>) §2

Y.N. Srikant Automatic Parallelization

