
Instruction Scheduling - Part 1

Y.N. Srikant

Department of Computer Science
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Compiler Design

Y.N. Srikant Instruction Scheduling

Outline

Instruction Scheduling
Simple Basic Block Scheduling
Automaton-based Scheduling
Integer programming based scheduling
Optimal Delayed-load Scheduling (DLS) for trees
Trace, Superblock and Hyperblock scheduling

Y.N. Srikant Instruction Scheduling

Instruction Scheduling

Reordering of instructions so as to keep the pipelines of
functional units full with no stalls

NP-Complete and needs heuristcs

Applied on basic blocks (local)

Global scheduling requires elongation of basic blocks
(super-blocks)

Y.N. Srikant Instruction Scheduling

Instruction Scheduling - Motivating Example

time: load - 2 cycles, op - 1 cycle
This code has 2 stalls, at i3 and at i5,
due to the loads

i1: r1 load ai2: r2 load bi3: r3 r1 + r2i4: r4 load ci5: r5 r3 - r4i6: r6 r3 * r5i7: d st r6(a) Sample Code Sequence

i1 i2 i4

i3

i5

i7

i6

load load load

add

sub

st

mult

(b) DAG
Y.N. Srikant Instruction Scheduling

Scheduled Code - no stalls

There are no stalls, but dependences are indeed satisfied

i1: r1 load ai2: r2 load bi4: r4 load ci3: r3 r1 + r2i5: r5 r3 - r4i6: r6 r3 * r5i7: d st r6
Y.N. Srikant Instruction Scheduling

Definitions - Dependences

Consider the following code:
i1 : r1← load(r2)
i2 : r3← r1 + 4
i3 : r1← r4 + r5

The dependences are
i1 δ i2 (flow dependence) i2 δ i3 (anti-dependence)
i1 δo i3 (output dependence)

anti- and ouput dependences can be eliminated by register
renaming

Y.N. Srikant Instruction Scheduling

Dependence DAG

full line: flow dependence, dash line: anti-dependence
dash-dot line: output dependence
some anti- and output dependences are because memory
disambiguation could not be done

i1: t1 load ai2: t2 load bi3: t3 t1 + 4i4: t4 t1 - 2i5: t5 t2 + 3i6: t6 t4 * t2i7: t7 t3 + t6i8: c st t7i9: b st t5(a) Instruction Sequence
st

add

mult st

add

ldld

add sub

i1

i3 i4

i7

i8

i6

i2

i5

i9

(b) DAG
Y.N. Srikant Instruction Scheduling

Basic Block Scheduling

Basic block consists of micro-operation sequences (MOS),
which are indivisible

Each MOS has several steps, each requiring resources

Each step of an MOS requires one cycle for execution
Precedence constraints and resource constraints must be
satisfied by the scheduled program

PC’s relate to data dependences and execution delays
RC’s relate to limited availability of shared resources

Y.N. Srikant Instruction Scheduling

The Basic Block Scheduling Problem

Basic block is modelled as a digraph, G = (V ,E)

R: number of resources
Nodes (V): MOS; Edges (E): Precedence
Label on node v

resource usage functions, ρv (i) for each step of the MOS
associated with v
length l(v) of node v

Label on edge e: Execution delay of the MOS, d(e)

Problem: Find the shortest schedule σ : V → N such that
∀e = (u, v) ∈ E , σ(v) − σ(u) ≥ d(e) and

∀i ,
v∈V∑

ρv (i − σ(v)) ≤ R, where
length of the schedule is max

v∈V
{σ(v) + l(v)}

Y.N. Srikant Instruction Scheduling

Instruction Scheduling - Precedence and Resource
Constraints

Y.N. Srikant Instruction Scheduling

A Simple List Scheduling Algorithm

Find the shortest schedule σ : V → N, such that precedence
and resource constraints are satisfied. Holes are filled with
NOPs.

FUNCTION ListSchedule (V,E)
BEGIN

Ready = root nodes of V; Schedule = φ;
WHILE Ready 6= φ DO
BEGIN

v = highest priority node in Ready;
Lb = SatisfyPrecedenceConstraints (v , Schedule, σ);
σ(v) = SatisfyResourceConstraints (v , Schedule, σ, Lb);
Schedule = Schedule + {v};
Ready = Ready − {v} + {u | NOT (u ∈ Schedule)

AND ∀ (w ,u) ∈ E , w ∈ Schedule};
END
RETURN σ;

END
Y.N. Srikant Instruction Scheduling

List Scheduling - Ready Queue Update

Y.N. Srikant Instruction Scheduling

Constraint Satisfaction Functions

FUNCTION SatisfyPrecedenceConstraint(v, Sched, σ)
BEGIN

RETURN (max
u∈Sched

σ(u) + d(u, v))

END

FUNCTION SatisfyResourceConstraint(v, Sched, σ, Lb)
BEGIN

FOR i := Lb TO∞ DO

IF ∀0 ≤ j < l(v), ρv (j) +
u∈Sched∑

ρu(i + j − σ(u)) ≤ R THEN
RETURN (i);

END

Y.N. Srikant Instruction Scheduling

Precedence Constraint Satisfaction

Y.N. Srikant Instruction Scheduling

Resource Constraint Satisfaction

Y.N. Srikant Instruction Scheduling

List Scheduling - Priority Ordering for Nodes

1 Height of the node in the DAG (i.e., longest path from the
node to a terminal node

2 Estart, and Lstart, the earliest and latest start times
Violating Estart and Lstart may result in pipeline stalls
Estart(v) = max

i=1,··· ,k
(Estart(ui) + d(ui , v))

where u1, u2, · · · , uk are predecessors of v . Estart value of
the source node is 0.
Lstart(u) = min

i=1,··· ,k
(Lstart(vi)− d(u, vi))

where v1, v2, · · · , vk are successors of u. Lstart value of the
sink node is set as its Estart value.
Estart and Lstart values can be computed using a
top-down and a bottom-up pass, respectively, either
statically (before scheduling begins), or dynamically during
scheduling

Y.N. Srikant Instruction Scheduling

Estart and Lstart Computation

Y.N. Srikant Instruction Scheduling

List Scheduling - Slack

1 A node with a lower Estart (or Lstart) value has a higher
priority

2 Slack = Lstart − Estart
Nodes with lower slack are given higher priority
Instructions on the critical path may have a slack value of
zero and hence get priority

Y.N. Srikant Instruction Scheduling

Simple List Scheduling - Example - 1

1

3

6

2

4

5

1

0

1

1

2 0

1 2

2

1

1

4

5

1 2

3

node no.path length exec time

LEGEND

latency

path length (n) = exec time (n) , if n is a leaf

 = max { latency (n,m) + path length (m) }
ε m succ (n)

Schedule = {3, 1, 2, 4, 6, 5}

INSTRUCTION SCHEDULING - EXAMPLE

3

Y.N. Srikant Instruction Scheduling

Simple List Scheduling - Example - 2

latencies
add,sub,store: 1 cycle; load: 2 cycles; mult: 3 cycles

path length and slack are shown on the left side and right
side of the pair of numbers in parenthesesc = (a+4)+(a-2)*b;b = b+3;(a) High-Level Codei1: t1 load ai2: t2 load bi3: t3 t1 + 4i4: t4 t1 - 2i5: t5 t2 + 3i6: t6 t4 * t2i7: t7 t3 + t6i8: c st t7i9: b st t5(b) 3-Address Code

ld

sub

mult st

add

st

add

ld

add

5(3, 3)0

6(2, 2)0

8(0, 0)0

3(2, 5)3 1(2, 7)5

7(0, 1)1

0(8, 8)0

2(6, 6)0

1(7, 7)0

i1

i3 i4

i7

i8

i6

i2

i5

i9

(c) DAG with (Estart, Lstart) Values
Y.N. Srikant Instruction Scheduling

