
Instruction Scheduling - Part 2

Y.N. Srikant

Department of Computer Science
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Compiler Design

Y.N. Srikant Instruction Scheduling

Instruction Scheduling

Reordering of instructions so as to keep the pipelines of
functional units full with no stalls

NP-Complete and needs heuristcs

Applied on basic blocks (local)

Global scheduling requires elongation of basic blocks
(super-blocks)

Y.N. Srikant Instruction Scheduling

Basic Block Scheduling

Basic block consists of micro-operation sequences (MOS),
which are indivisible

Each MOS has several steps, each requiring resources

Each step of an MOS requires one cycle for execution
Precedence constraints and resource constraints must be
satisfied by the scheduled program

PC’s relate to data dependences and execution delays
RC’s relate to limited availability of shared resources

Y.N. Srikant Instruction Scheduling

A Simple List Scheduling Algorithm

Find the shortest schedule σ : V → N, such that precedence
and resource constraints are satisfied. Holes are filled with
NOPs.

FUNCTION ListSchedule (V,E)
BEGIN

Ready = root nodes of V; Schedule = φ;
WHILE Ready 6= φ DO
BEGIN

v = highest priority node in Ready;
Lb = SatisfyPrecedenceConstraints (v , Schedule, σ);
σ(v) = SatisfyResourceConstraints (v , Schedule, σ, Lb);
Schedule = Schedule + {v};
Ready = Ready − {v} + {u | NOT (u ∈ Schedule)

AND ∀ (w ,u) ∈ E , w ∈ Schedule};
END
RETURN σ;

END
Y.N. Srikant Instruction Scheduling

Constraint Satisfaction Functions

FUNCTION SatisfyPrecedenceConstraint(v, Sched, σ)
BEGIN

RETURN (max
u∈Sched

σ(u) + d(u, v))

END

FUNCTION SatisfyResourceConstraint(v, Sched, σ, Lb)
BEGIN

FOR i := Lb TO∞ DO

IF ∀0 ≤ j < l(v), ρv (j) +
u∈Sched∑

ρu(i + j − σ(u)) ≤ R THEN
RETURN (i);

END

Y.N. Srikant Instruction Scheduling

List Scheduling - Priority Ordering for Nodes

1 Height of the node in the DAG (i.e., longest path from the
node to a terminal node

2 Estart, and Lstart, the earliest and latest start times
Violating Estart and Lstart may result in pipeline stalls
Estart(v) = max

i=1,··· ,k
(Estart(ui) + d(ui , v))

where u1, u2, · · · , uk are predecessors of v . Estart value of
the source node is 0.
Lstart(u) = min

i=1,··· ,k
(Lstart(vi)− d(u, vi))

where v1, v2, · · · , vk are successors of u. Lstart value of the
sink node is set as its Estart value.
Estart and Lstart values can be computed using a
top-down and a bottom-up pass, respectively, either
statically (before scheduling begins), or dynamically during
scheduling

Y.N. Srikant Instruction Scheduling

List Scheduling - Slack

1 A node with a lower Estart (or Lstart) value has a higher
priority

2 Slack = Lstart − Estart
Nodes with lower slack are given higher priority
Instructions on the critical path may have a slack value of
zero and hence get priority

Y.N. Srikant Instruction Scheduling

Simple List Scheduling - Example - 1

1

3

6

2

4

5

1

0

1

1

2 0

1 2

2

1

1

4

5

1 2

3

node no.path length exec time

LEGEND

latency

path length (n) = exec time (n) , if n is a leaf

 = max { latency (n,m) + path length (m) }
ε m succ (n)

Schedule = {3, 1, 2, 4, 6, 5}

INSTRUCTION SCHEDULING - EXAMPLE

3

Y.N. Srikant Instruction Scheduling

Simple List Scheduling - Example - 2

latencies
add,sub,store: 1 cycle; load: 2 cycles; mult: 3 cycles

path length and slack are shown on the left side and right
side of the pair of numbers in parenthesesc = (a+4)+(a-2)*b;b = b+3;(a) High-Level Codei1: t1 load ai2: t2 load bi3: t3 t1 + 4i4: t4 t1 - 2i5: t5 t2 + 3i6: t6 t4 * t2i7: t7 t3 + t6i8: c st t7i9: b st t5(b) 3-Address Code

ld

sub

mult st

add

st

add

ld

add

5(3, 3)0

6(2, 2)0

8(0, 0)0

3(2, 5)3 1(2, 7)5

7(0, 1)1

0(8, 8)0

2(6, 6)0

1(7, 7)0

i1

i3 i4

i7

i8

i6

i2

i5

i9

(c) DAG with (Estart, Lstart) Values
Y.N. Srikant Instruction Scheduling

Simple List Scheduling - Example - 2 (contd.)

latencies
add,sub,store: 1 cycle; load: 2 cycles; mult: 3 cycles
2 Integer units and 1 Multiplication unit, all capable of load
and store as well

Heuristic used: height of the node or slack

int1 int2 mult Cycle # Instr.No. Instruction
1 1 0 0 i1, i2 t1 ← load a, t2 ← load b
1 1 0 1
1 1 0 2 i4, i3 t4 ← t1 − 2, t3 ← t1 + 4
1 0 1 3 i6, i5 t5 ← t2 + 3, t6 ← t4 ∗ t2
0 0 1 4 i6/i5 not sched. in cycle 2
0 0 1 5 due to shortage of int units
1 0 0 6 i7 t7 ← t3 + t6
1 0 0 7 i8 c ← st t7
1 0 0 8 i9 b ← st t5

Y.N. Srikant Instruction Scheduling

Resource Usage Models - Reservation Table

Resources Time Steps0 1 2 3r0 1 0 0 0r1 0 1 1 0r2 0 0 0 1(a) Reservation Table for I1

Resources Time Steps0 1 2 3r0 1 0 0 0r3 0 1 0 0r4 0 0 1 1(b) Reservation Table for I2
Y.N. Srikant Instruction Scheduling

Resource Usage Models - Global Reservation Table

r0 r1 r2 · · · rM

t0 1 0 1 0
t1 1 1 0 1
t2 0 0 0 1

tT

M: No. of resources in the machine
T: Length of the schedule

Y.N. Srikant Instruction Scheduling

Resource Usage Models - Global Reservation Table

GRT is constructed as the schedule is built (cycle by cycle)

All entries of GRT are initialized to 0

GRT maintains the state of all the resources in the machine

GRTs can answer questions of the type:
“can an instruction of class I be scheduled in the current
cycle (say tk)?”
Answer is obtained by ANDing RT of I with the GRT
starting from row tk

If the resulting table contains only 0’s, then YES, otherwise
NO

The GRT is updated after scheduling the instruction with a
similar OR operation

Y.N. Srikant Instruction Scheduling

Operation Scheduling

List scheduling discussed so far schedules instructions on
a cycle-by-cycle basis

Operation scheduling attempts to schedule instructions
one after another

Tries to find the first cycle at which each instruction can be
scheduled

After choosing an operation i of highest priority, an attempt
is made to schedule it at time t between Estart(i) and
Lstart(i) that does not have any resource conflict

This scheduling may affect the Estart and Lstart values of
unscheduled instructions

Priorities may have to be recomputed for these instructions

Y.N. Srikant Instruction Scheduling

Operation Scheduling

If no time slot as above can be found for instruction i , an
already scheduled instruction j , which has resource
conflicts with instruction i is de-scheduled

Instruction i is placed in this slot and instruction j is placed
in the ready list once again

In order to ensure that the algorithm does no get into an
infinite loop (a group of instructions mutually de-schedule
each other), a threshold on the number of de-scheduled
instructions is kept

Once the threshold is crossed, the partial schedule is
abandoned, the Lstart value of the sink node is increased,
new value of Lstart is computed, and the whole process is
restarted

Y.N. Srikant Instruction Scheduling

Simple List Scheduling - Operation Scheduling

latencies
add,sub,store: 1 cycle; load: 2 cycles; mult: 3 cycles
2 Integer units and 1 Multiplication unit, all capable of load
and store as wellc = (a+4)+(a-2)*b;b = b+3;(a) High-Level Codei1: t1 load ai2: t2 load bi3: t3 t1 + 4i4: t4 t1 - 2i5: t5 t2 + 3i6: t6 t4 * t2i7: t7 t3 + t6i8: c st t7i9: b st t5(b) 3-Address Code

ld

sub

mult st

add

st

add

ld

add

5(3, 3)0

6(2, 2)0

8(0, 0)0

3(2, 5)3 1(2, 7)5

7(0, 1)1

0(8, 8)0

2(6, 6)0

1(7, 7)0

i1

i3 i4

i7

i8

i6

i2

i5

i9

(c) DAG with (Estart, Lstart) Values
Y.N. Srikant Instruction Scheduling

Simple List Scheduling - Operation Scheduling
(contd.)

Instructions sorted on slack, with (Estart ,Lstart) values
slack 0: i1(0,0), i4(2,2), i6(3,3), i7(6,6), i8(7,7), i9(8,8)
slack 1: i2(0,1), slack 3: i3(2,5), slack 5: i5(2,7)

Cycle # Instr.No. Instruction
0 i1, i2 t1 ← load a, t2 ← load b
1
2 i4, i3 t4 ← t1 − 2, t3 ← t1 + 4
3 i6, i5 t5 ← t2 + 3, t6 ← t4 ∗ t2
4
5
6 i7 t7 ← t3 + t6
7 i8 c ← st t7
8 i9 b ← st t5

Y.N. Srikant Instruction Scheduling

Simple List Scheduling - Disadvantages

Checking resource constraints is inefficient here because it
involves repeated ANDing and ORing of bit matrices for
many instructions in each scheduling step

Space overhead may become considerable, but still
manageable

Y.N. Srikant Instruction Scheduling

Automaton Based Scheduling

Constructs a collision automaton which indicates whether it
is legal to issue an instruction in a given cycle (i.e., no
resource contentions)

Collision automaton recognises legal instruction
sequences

Avoids extensive searching that is needed in list scheduling

Uses the same topological ordering and ready queue as in
list scheduling, to handle precedence constraints

Automaton can be constructed offline using resource
reservation tables

Y.N. Srikant Instruction Scheduling

Collision Automaton

Uses a collision matrix for each state
Size: #instruction classes × length of the longest pipeline
S[i, j] = 1, iff i th instruction class creates a conflict with the
current pipeline state S, if issued j cycles after the machine
enters the current state S

Each instruction class I also has a similar collision matrix
I[i, j] = 1, iff instruction of class i would create a conflict with
instruction class I in cycle j, if launched in the current cycle
These collision matrices are created using resource vectors

For the example, consider a dual issue machine

Y.N. Srikant Instruction Scheduling

Collision Automaton - Example

Resource Usage Vectors

instr class
0

pipeline cycle
1

i

f

ls

fd

mem

id

id+mem

Collision Matrices

0 1 0 1 0 1

ii i

f

ls ls ls

f f0 0

1 0

 1 0

 1 0

0 0

0 0

0 0

1 1

 1 0

int/inop
(i class)

fp/fnop
(f class)

ld/st
(ls class)

0 0
0 0
0 0

0 0
1 0
0 01 0

0 0
1 1

0 0
1 0
1 0

0 0
0 0
1 0

1 0
0 0
1 0

F3

F5

F4

F2

F0 F1

f

i

i

f
ls

f

ls

i

f

i

COLLISION AUTOMATON

Y.N. Srikant Instruction Scheduling

Transitions in a Collision Automaton

Given a state S and any instruction i from an instruction
class I

S[I, 1] = 0 implies that it is legal to issue i from S
Only legal issues have edges in the automaton
The collision matrix of the target state S′ is produced by
OR-ing collision matrices of S and I
When no instruction is legal to be issued from S, S is said
to be cycle-advancing

In any state, a NOP instruction can be issued
such a state behaves as a cycle-advancing state, only
when a NOP is issued (not otherwise)

Y.N. Srikant Instruction Scheduling

Cycle-advancing State

Collision matrix is produced by left-shifting by one column,
the collision matrix of S

Such a state represents start of a new clock tick in all
pipelines

In single instruction issue processors, all states are
cycle-advancing

Start state is cycle-advancing

States in which NOP is issued behave like a
cycle-advancing state

Y.N. Srikant Instruction Scheduling

Instruction Scheduling with Collision Automaton

1 Start at the Start state of the automaton
2 Pick instructions one by one, in priority order from the

ready list
3 If it is legal to issue the picked instruction in the current

state (i.e., cycle), issue it; there is no advancement of the
cycle counter

4 Change state, compute collision matrix, update ready list
and repeat the steps 2-3-4

5 If no instructions in the ready list are legal to be issued in a
state, then insert a NOP in the output and compute the
collision matrix as explained above for cycle-advancing
states, and advance the cycle counter; goto to step 2

Note: If step 5 is executed repeatedly, start state will be
reached at some point and in the start state, all resources will
be available

Y.N. Srikant Instruction Scheduling

