
Instruction Scheduling - Part 3

Y.N. Srikant

Department of Computer Science
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Compiler Design

Y.N. Srikant Instruction Scheduling

Instruction Scheduling

Reordering of instructions so as to keep the pipelines of
functional units full with no stalls

NP-Complete and needs heuristcs

Applied on basic blocks (local)

Global scheduling requires elongation of basic blocks
(super-blocks)

Y.N. Srikant Instruction Scheduling

Optimal Instruction Scheduling using Integer Linear
Programming

This is useful for the evaluation of instruction scheduling
heuristics that do not generate optimal schedules

Careful implementation may enable these methods to be
deployed even in production quality compilers

Assume a simple resource model in which all the
functional units are fully pipelined

Assume an architecture with integer ALU, FP add unit, FP
mult/div unit, and load/store unit with possibly differing
execution latencies

Assume that there are Rr instances of the functional unit r

Y.N. Srikant Instruction Scheduling

Optimal Instruction Scheduling using Integer Linear
Programming

Let σi be the time at which instruction i is scheduled

Let d(i ,j) be the weight of the edge (i , j) of the DAG

To satisfy dependence constraints, for each arc (i , j) of the
DAG

σj ≥ σi + d(i ,j) (1)

A matrix Kn×T , where n is the number of instructions in the
DAG and T is an estimate of the worst case execution time
of the schedule, is used

T can be estimated by summing up the execution times of
all the instructions in the DAG

K [i , t] is 1, if instruction i is scheduled at time step t and 0
otherwise

Y.N. Srikant Instruction Scheduling

Optimal Instruction Scheduling using Integer Linear
Programming

The schedule time σi of instruction i can be expressed as

σi = ki ,0 · 0 + ki ,1 · 1 + · · ·+ ki ,T−1 · (T − 1)

where exactly one of the ki ,j is 1
This can be written in matrix form for all σi ’s as:

σ0

σ1
...
σn−1

=

k0,0 k0,1, · · · k0,T−1

k1,0 k1,1 · · · k1,T−1
...

...
...

...
kn−1,0 kn−1,1 · · · kn−1,T−1

∗

0
1
...

T − 1

(2)
To express that each instruction is scheduled exactly once,
we include the constraint

∑

t

ki ,t = 1, ∀i (3)

Y.N. Srikant Instruction Scheduling

Optimal Instruction Scheduling using Integer Linear
Programming

The resource constraint that no more than Rr instructions
are scheduled in any time step can be expressed as

∑

i ∈ F (r)

ki ,t ≤ Rr , ∀ t and ∀ r (4)

where F (r) represents the set of instructions that can be
executed in functional unit type r .

The objective function is to minimize the execution time or
schedule length, subject to the constraints in equations 1-4
above. This can be represented as:

minimize(max
i

(σi + d(i ,j)))

Y.N. Srikant Instruction Scheduling

Delayed Load Scheduling Algorithm for Trees

RISC load/store architecture with delayed loads

Single cycle issue/execution, with only loads pipelined
(load delay = 1 cycle)

Generates optimal code without any interlocks for
expression trees
Three phases

Computation of minReg as in Sethi-Ullman code generation
algorithm
Ordering of loads and operations as in the SU algorithm
Emitting code in canonical DLS order

Uses 1 + minReg number of registers and can handle only
one cycle load delay

Y.N. Srikant Instruction Scheduling

Sethi-Ullman minReg Computation Algorithm

if (isLeaf(node)) then {node.minReg = 1}
else
if (node.left.minReg == node.right.minReg) then

{node.minReg = node.left.minReg + 1}
else {node.minReg = MAX(node.left.minReg,

node.right.minReg)}

Y.N. Srikant Instruction Scheduling

Sethi-Ullman minReg Computation Example

i1: t1 load ai2: t2 load bi3: t3 t1 + t2i4: t4 load ci5: t5 load ai6: t6 load bi7: t7 t5 + t6i8: t8 t7 - t4i9: t9 t3 * t8i10: d st t9(a) 3-Address Code

3

3

2

1 1 111

2 2

i10

i9

i3

i1 i2 i5

i7

i8

i4i6

st

mult

add add

sub

loadloadloadloadload (b) Expression Tree
Y.N. Srikant Instruction Scheduling

Sethi-Ullman Algorithm Code Gen Example

i1: r1 load ai2: r2 load bi3: r1 r1 + r2i4: r2 load ci5: r3 load ai6: r4 load bi7: r3 r3 + r4i8: r2 r3 - r2i9: r1 r1 * r2i10: d st r1(a) Code Sequence using 4 Registers
i5: r1 load ai6: r2 load bi7: r1 r1 + r2i4: r2 load ci8: r1 r1 - r2i1: r2 load ai2: r3 load bi3: r2 r2 + r3i9: r1 r1 * r2i10: d st r1(b) Optimal Code Sequence with 3 Registers

Y.N. Srikant Instruction Scheduling

DLS Computation Example

i5: r1 load ai6: r2 load bi7: r1 r1 + r2 % 1 stalli4: r2 load ci8: r1 r1 - r2 % 1 stalli1: r2 load ai2: r3 load bi3: r2 r2 + r3 % 1 stalli9: r1 r1 * r2i10: d st r1(a) Stalls in Sethi-Ullman Sequence
i5: r1 load ai6: r2 load bi4: r3 load ci1: r4 load ai7: r1 r1 + r2i2: r2 load bi8: r1 r1 - r3i3: r4 r4 + r2i9: r1 r1 * r4i10: d st r1(b) DLS Sequence with No Stalls

Y.N. Srikant Instruction Scheduling

DLS Algorithm - Main Program

Procedure Generate(root: ExprNode)
{ label(root); //Calculate minReg values
opSched = loadSched = emptyList(); //Initialize
order(root, opSched, loadSched);
//Find load and operation order
schedule(opSched, loadSched, root.minReg+1);
//Emit canonical order

}

Y.N. Srikant Instruction Scheduling

DLS Algorithm - Finding SU Order

Procedure Order(root: ExprNode;
var opSched, loadSched: NodeList)

{ if (not(isLeaf(root))
{ if (root.left.minReg < root.right.minReg)

{ order(root.right, opSched, loadSched);
order(root.left, opSched, loadSched);

} else
{order(root.left, opSched, loadSched);
order(root.right, opSched, loadSched);

}
append(root, opSched);

}
else { append(root, loadSched);

}

Y.N. Srikant Instruction Scheduling

DLS Algorithm - Scheduling

Procedure schedule(opSched, loadSched: NodeList;
Regs: integer)

{ for i = 1 to MIN(Regs, length(loadSched)) do
// loads first
{ ld = popHead(loadSched);
ld.reg = getReg(); gen(Load, ld.name, ld.Reg)}

while (not Empty(loadSched))
// (Operation,Load) pairs next
{ op = popHead(opSched); op.reg = op.left.reg;
gen(op.op, op.left.reg, op.right.reg, op.reg);
ld = popHead(loadSched); ld.reg = op.right.reg;
gen(Load, ld.name, ld.reg) }

while (not Empty(opSched)) //Remaining Operations
{ op = popHead(opSched); op.reg = op.left.reg;
gen(op.op, op.left.reg, op.right.reg, op.reg);
freeReg(op.right.reg) }

}
Y.N. Srikant Instruction Scheduling

Global Acyclic Scheduling

Average size of a basic block is quite small (5 to 20
instructions)

Effectiveness of instruction scheduling is limited
This is a serious concern in architectures supporting
greater ILP

VLIW architectures with several function units
superscalar architectures (multiple instruction issue)

Global scheduling is for a set of basic blocks
Overlaps execution of successive basic blocks
Trace scheduling, Superblock scheduling, Hyperblock
scheduling, Software pipelining, etc.

Y.N. Srikant Instruction Scheduling

Trace Scheduling

A Trace is a frequently executed acyclic sequence of basic
blocks in a CFG (part of a path)
Identifying a trace

Identify the most frequently executed basic block
Extend the trace starting from this block, forward and
backward, along most frequently executed edges

Apply list scheduling on the trace (including the branch
instructions)

Execution time for the trace may reduce, but execution time
for the other paths may increase

However, overall performance will improve

Y.N. Srikant Instruction Scheduling

Trace Example

for (i=0; i < 100; i++){ if (A[i] == 0)B[i] = B[i] + s;elseB[i] = A[i];sum = sum + B[i];} (a) High-Level Code

%% r1 0%% r5 0%% r6 400%% r7 sB1: i1: r2 load a(r1)i2: if (r2 != 0) goto i7B2: i3: r3 load b(r1)i4: r4 r3 + r7i5: b(r1) r4i6: goto i9B3: i7: r4 r2i8: b(r1) r2B4: i9: r5 r5 + r4i10: r1 r1 + 4i11: if (r1 < r6) goto i1(b) Assembly Code
B2

B1

B3

B4

main trace(c) Control Flow Graph
Y.N. Srikant Instruction Scheduling

Trace - Basic Block Schedule

2-way issue architecture with 2 integer units
add, sub, store: 1 cycle, load: 2 cycles, goto: no stall
9 cycles for the main trace and 6 cycles for the off-traceTime Int. Unit 1 Int. Unit 20 i1: r2 load a(r1)12 i2: if (r2 != 0) goto i73 i3: r3 load b(r1)45 i4: r4 r3 + r76 i5: b(r1) r4 i6: goto i93 i7: r4 r2 i8: b(r1) r27 (4) i9: r5 r5 + r4 i10: r1 r1 + 48 (5) i11: if (r1 < r6) goto i1

Y.N. Srikant Instruction Scheduling

Trace Schedule

Y.N. Srikant Instruction Scheduling

Trace Schedule

6 cycles for the main trace and 7 cycles for the off-traceTime Int. Unit 1 Int. Unit 20 i1: r2 load a(r1) i3: r3 load b(r1)12 i2: if (r2 != 0) goto i7 i4: r4 r3 + r73 i5: b(r1) r44 (5) i9: r5 r5 + r4 i10: r1 r1 + 45 (6) i11: if (r1 < r6) goto i13 i7: r4 r2 i8: b(r1) r24 i12: goto i9
Y.N. Srikant Instruction Scheduling

Trace Scheduling - Issues

Side exits and side entrances are ignored during
scheduling of a trace

Required compensation code is inserted during
book-keeping (after scheduling the trace)
Speculative code motion - load instruction moved ahead of
conditional branch

Example: Register r3 should not be live in block B3
(off-trace path)
May cause unwanted exceptions

Requires additional hardware support!

Y.N. Srikant Instruction Scheduling

Compensation Code - Side Exit

Y.N. Srikant Instruction Scheduling

Compensation Code - Side Exit

Y.N. Srikant Instruction Scheduling

Compensation Code - Side Entry

Y.N. Srikant Instruction Scheduling

Compensation Code - Side Entry

Y.N. Srikant Instruction Scheduling

Superblock Scheduling

A Superblock is a trace without side entrances
Control can enter only from the top
Many exits are possible
Eliminates several book-keeping overheads

Superblock formation
Trace formation as before
Tail duplication to avoid side entrances into a superblock
Code size increases

Y.N. Srikant Instruction Scheduling

Superblock Example

5 cycles for the main trace and 6 cycles for the off-trace

B1

B2

B4

B3

B4’

SuperBlock 1

SuperBlock 2

(a) Control Flow Graph
Time Int. Unit 1 Int. Unit 20 i1: r2 load a(r1) i3: r3 load b(r1)12 i2: if (r2!=0) goto i7 i4: r4 r3 + r73 i5: b(r1) r4 i10: r1 r1 + 44 i9: r5 r5 + r4 i11: if (r1<r6) goto i13 i7: r4 r2 i8: b(r1) r24 i9': r5 r5 + r4 i10': r1 r1 + 45 i11': if (r1<r6) goto i1(b) Superblock Schedule

Y.N. Srikant Instruction Scheduling

Hyperblock Scheduling

Superblock scheduling does not work well with
control-intensive programs which have many control flow
paths

Hyperblock scheduling was proposed to handle such
programs

Here, the control flow graph is IF-converted to eliminate
conditional branches

IF-conversion replaces conditional branches with
appropriate predicated instructions

Now, control dependence is changed to a data
dependence

Y.N. Srikant Instruction Scheduling

IF-Conversion Example

Y.N. Srikant Instruction Scheduling

Hyperblock Example Code

for (i=0; i < 100; i++){ if (A[i] == 0)B[i] = B[i] + s;elseB[i] = A[i];sum = sum + B[i];} (a) High-Level Code

%% r1 0%% r5 0%% r6 400%% r7 sB1: i1: r2 load a(r1)i2: if (r2 != 0) goto i7B2: i3: r3 load b(r1)i4: r4 r3 + r7i5: b(r1) r4i6: goto i9B3: i7: r4 r2i8: b(r1) r2B4: i9: r5 r5 + r4i10: r1 r1 + 4i11: if (r1 < r6) goto i1(b) Assembly Code
B2

B1

B3

B4

main trace(c) Control Flow Graph
Y.N. Srikant Instruction Scheduling

Hyperblock Example

6 cycles for the entire set of predicated instructions

Instructions i3 and i4 can be executed speculatively and
can be moved up, instead of being scheduled after cycle 2

B2

B1

B3

B4

Hyperblock(a) Control Flow Graph

Time Int. Unit 1 Int. Unit 20 i1: r2 load a(r1) i3: r3 load b(r1)12 i2': p1 (r2 == 0) i4: r4 r3 + r73 i5: b(r1) r4, if p1 i8: b(r1) r2, if !p14 i10: r1 r1 + 4 i7: r4 r2, if !p15 i9: r5 r5 + r4 i11: if (r1<r6) goto i1(b) Hyperblock Schedule

151

Y.N. Srikant Instruction Scheduling

Delayed Branch Scheduling

Delayed branching
One instruction immediately following the delayed branch
instruction will be executed before the branch is taken
The instruction occupying the delay slot should be
independent of the branch instruction

It is best to fill the branch delay slot with an instruction from
the basic block that the branch terminates
Otherwise, an instruction from either the target block or the
fall-through block, whichever is most likely to be executed,
is selected

The selected instruction should either be a root node of the
DAG of the basic block (target of fall-through)
and has a destination register that is not live-in in the other
block
or has a destination register that can be renamed

Y.N. Srikant Instruction Scheduling

Delay Branch Scheduling Conditions - 1

Y.N. Srikant Instruction Scheduling

Delay Branch Scheduling Conditions - 2

Y.N. Srikant Instruction Scheduling

