Software Pipelining

Y.N. Srikant

Department of Computer Science
Indian Institute of Science
Bangalore 560 012

NPTEL Course on Compiler Design

Y.N. Srikant Software Pipelining

Introduction to Software Pipelining

@ Overlaps execution of instructions from multiple iterations
of a loop

@ Executes instructions from different iterations in the same
pipeline, so that pipelines are kept busy without stalls

@ Objective is to sustain a high initiation rate

@ Initiation of a subsequent iteration may start even before
the previous iteration is complete

@ Unrolling loops several times and performing global
scheduling on the unrolled loop

@ Exploits greater ILP within unrolled iterations
@ Very little or no overlap across iterations of the loop

Y.N. Srikant Software Pipelining

Approaches to Software Pipelining

@ Iterative modulo scheduling

@ Similar to list scheduling, computes priorities and uses
operation scheduling (details later)
@ Uses Modulo Reservation Tables (MRT)
@ A global resource reservation table with Il columns and R
rows
@ MRT records resource usage of the schedule (of the kernel)
as it is constructed
@ |Initially all entries are 0
@ If an instruction uses a resource r at time step t, then the
entry MRT (r, t mod Il) is setto 1
@ Slack scheduling

@ Uses earliest and latest issue times for each instruction
(difference is slack)

@ Schedules an instruction within its slack

@ Also uses MRT

Y.N. Srikant Software Pipelining

Introduction to Software Pipelining - contd.

(]

More complex than instruction scheduling

NP-Complete
Involves finding initiation interval for successive iterations

@ Trial and error procedure

@ Start with minimum Il, schedule the body of the loop using
one of the approaches below and check if schedule length
is within bounds

@ Stop, if yes
@ Try next value of Il, if no
Requires a modulo reservation table

Schedule lengths are dependent on Il, dependence
distance between instructions and resource contentions

¢ ¢

e ©

Y.N. Srikant Software Pipelining

Software Pipelining Example-1

for (i=1; i<=n; i++) {
afi+1] = afi] + 1;
b[i] = a[i+1]/2;
cfi] = b[i] + 3;
d[i] = c[i]

L1

(dep.dist, delay)
(0.1)

Y.N. Srikant

Iterations
1 S1
T2 S2 s1
3 S3 S?2 S1
| 4 S4 S3 S2 S1
5 S4 S3 S2 S1
M 6 S4 S3 S2 S1
7 S4 S3 S2 S1
g8 S4 S3 S2
9 S4 S3
10 S4

Software Pipelining

Software Pipelining Example-2.1

No. of tokens present on an arc indicates the dependence
distance
for (i=0;1<m;i++){

afi] = s * aif;
ol

(a) High-Level Code
% t0 < 0 %

% 61 « (n-1) Y% 13
i0: | t3 load a(t0)
£2 * t3

<_
il: | t4 —
i2: [a(t0) <+ t4
i3: | t0 — t0 + 4
i4: | t1 — t1 -1

ib: | if (t1 > 0) goto i0

(b) Instruction Sequence (¢) Dependence graph

Software Pipelining Example

Y.N. Srikant Software Pipelining

Software Pipelining Example-2.2

(]

Number of tokens present on an arc indicates the
dependence distance

Assume that the possible dependence from i2 to i0 can be
disambiguated

Assume 2 INT units (latency 1 cycle), 2 FP units (latency 2
cycles), and 1 LD/STR unit (latency 2 cycles/1 cycle)

Branch can be executed by INT units

Acyclic schedule takes 5 cycles (see figure)
Corresponds to an initiation rate of 1/5 iteration per cycle
Cyclic schedule takes 2 cycles (see figure)

(]

(]

®© &6 ¢ ¢

Y.N. Srikant Software Pipelining

Acyclic and Cyclic Schedules

Acyclic Schedule

i0: load

i1: mult, i3: add, i4: sub

W IN| = |O

i2: store, i5: bge

Cyclic Schedule
4 i4: sub i1: mult | iO: load
5 | 1Zsore |
i5: bge
Y.N. Srikant Instruction Scheduling

Software Pipelining Example-2.3

2?;; Iter. 0 Iter. 1 Iter. 2
0| i0:Id
1
Prolog
2 | il: mult i0: Id
3| i3: add
4 | i4: sub i1: mult i0: Id
X Kernel
5| & pe | 13: add
6 i4: sub il: mult
i2: st
7 le ! i3: add
i5: bge Epilog
8 i4: sub
i2: st
9 i5: bge

A Software Pipelined Schedule with IT = 2

Y.N. Srikant

Software Pipelining

Software Pipelining Example-3

|
:] = d[|] + e[|—2]; Dependence
i]= t0[|] + c[i]' Graph

Pipe stages

09y =3 PSO PS1

oo " t

e P
IR IC B DIE ()

S e DO TR
@ operations

Y.N. Srikant Software Pipelining

Minimum Initiation Interval (Mll)

@ Minimum time before which, successive iterations cannot
be started
@ MIl = max(ResMIl, RecMiIl)

@ ResMIl is the minimum MII due to resource constraints
@ RecMIl is the minimum MII due to recurrences or cyclic
data dependences

Y.N. Srikant Software Pipelining

Resource Minimum Initiation Interval (ResMil)

@ Very expensive to determine exactly
@ For pipelined function units

Ny
ResMIl = n\}a}x ({F—rb Q)

where N, represents the number of instructions that
execute on a functional unit of type r, and F; is the number
of functional units of type r
@ For non-pipelined FUs or FUs with complex structural

hazards

ResMIl = max [&w (2)

vr Fr

where Ng , represents the maximum number of time steps
for which instruction a uses any of the stages of a
functional unit of type r. For example, for a non-pipelined
FU, N equals to the latency of the functional unit.

Y.N. Srikant Software Pipelining

Resource MIl Example - Fully Pipelined FU

ResMIl = max(ResMlljyt,ResMllgp, ResMllipstr) (3)

312
ResMII_max<2 > 1>_2 4)

for (i=0;i<mn;it++) {

ali] =s * alil;
}

(a) High-Level Code

% t0 < 0 %

%t (n-1) % 3

% t2 s % @
i0: | t3 < load a(t0)
il: | t4 — t2 * t3
i2: | a(t0) <« t4
i3: | t0 +— t0 + 4
i4: | t1 — t1 -1
i5: | if (t1 > 0) goto i0

(b) Instruction Sequence D(p(nd(nce gldph

Software Pipelining Example

Y.N. Srikant Software Pipelining

Resource MIl Example 2

Time Time
o1 2 0|12
@ w
Bl 110 Bl 01 1
s |n 0|11 sln|1]1]0
r, | 0|0 0 | 0|0 0
INT function unit LOYST function unit
Time ior Fo(2), T4(2); 2 15(3)
0 1 2 !2: ry(2), r4(2); !3: re(2), ry(2)
- iy: [p(2), ry(2); 5 rp(2), ry(2)
Bl 110
g Iy 0 1 1 ‘ Resources: ry(8), r,(8), r,(6) ‘
]
” s 0 0 0 ResMIl = max (r,:10/8, r,:10/8, r,:3/6)
=max (1.25, 1.25, 0.5) =2

FP function unit

Y.N. Srikant Instruction Scheduling

Recurrence Ml

@ Recurrence Minimum Initiation Interval (RecMIl)
@ Dependent on the cycle length (both delay length and
distance length) in the dependence graph

o RecMIl = max M
cecycles | distance(c)

@ Can be computed by enumerating all cycles

Y.N. Srikant Software Pipelining

Recurrence MIl Example

11
RecMIl = max <I’ I) =1 (6)

for (i=0;i<n;it+){

afi] = s * al[i;
ol

(a) High-Level Code
h t0 < 0%

% tl < (n-1) % 3
5 e &
i0: | 3 load a(t0)

“

il: | t4 — t2 *x t3

i2: | a(t0) <« t4

i3: | t0 — t0 + 4

i4: | t1 — tl-1 ,)

i5: | if (1 > 0) goto i0 '2 '5
(b) Instruction Sequence (c) Dependence graph

Software Pipelining Example

Y.N. Srikant Software Pipelining

ResMIl and RecMIl Example - Fully Pipelined FUs

4 2
ResMIl = ~2)=2
es max<2,2>

- [1523) - (2]) -

fori=1ton{

0: tO[i] = a[i] + b[i];

1: t1]i] = c[i] * constl; Dependence

2: t2[i] = d[i] + e[i=2]; P

3: t3[i] = tO[i] + cfil; Graph

4: t4[i] = t1[i] + t2[i];

5: e[i] = t3[i] * t4[i];
Program ©0.1)

Pipe stages

@@ i=3 PS0 PS1

[CCH ERLICIC)

® 00! " _60e
Loop unrolled toreveal the @ i Qﬂ!{gli,esrisﬁg%eag%?
software pipeline operations

Y.N. Srikant Software Pipelining

(7)

(8)

Modulo Scheduling Algorithm

© Compute MIl and set Il to Ml
@ Compute priority for each node

@ Height of a node is one of the priority functions and is
described later
@ Height is computed using both delay and distance

© Choose an operation of highest priority for scheduling
© Compute Estart for the operation (described later)

@ Try slots within the range (Estart, Estart+lI-1), for resource
contentions (all ranges are modulo II)

Y.N. Srikant Software Pipelining

Modulo Scheduling Algorithm

Q@ If one is available, then schedule the instruction; this may
involve unscheduling those immediate successors of the
instruction, with whom there is a dependence conflict (no
resource conflicts are possible; this has just been checked
before scheduling the instruction)

@ If none is available

@ choose Estart, if the instruction has not been scheduled so
far

@ choose prev-sched-time+1 if the instruction was previously
scheduled at prev-sched-time

@ this will invariably involve unscheduling all the instructions
which have resource contentions with the instruction being
scheduled

@ If there have been too many failures of the above types (6)
or (7), then increment Il and repeat the steps

Y.N. Srikant Software Pipelining

Operation Scheduling

@ Ready list has no use here because unscheduling of
previously scheduled instructions is possible

@ MRT with Il columns and R rows is used to record
commitments of scheduled instructions

@ Conflictattime T meansconflictatT +k xlland T — Kk x|l

max (0, SchedTime(Q) + Delay(Q, P)
—II « Distance(Q, P)), otherwise
0, if P is the STOP pseudo — op

Height(P) = { ,max_ (Height(Q)+ Delay(P,Q)-

Il x Distance(P,Q)), otherwise

Estart(P) = max

0, if Q is unscheduled
QePred(P)

@ Note that only scheduled predecessors will be considered
in the computation of Estart

Y.N. Srikant Software Pipelining

Rotating Register Set and Modulo-Variable Expansion

@ Instances of a single variable defined in a loop are active
simultaneously in different concurrently active iterations
(see figure in next slide)

@ Value produced by il in time step 2 is used by i2 only in
time step 5

@ However, another instance of il from iter 1 in time step 4
could overwrite the destination register

@ Assigning the same register for each such variable will be
incorrect

@ Automatic register renaming through rotating register sets
is one hardware solution
@ Unrolling the loop as many as Il times (max) and then

applying the usual RA is another solution (Modulo-variable
expansion)

@ This process essentially renames the destination registers
appropriately
@ Increases Il

Y.N. Srikant Software Pipelining

Interacting Live Range Problem

2?;; Iter. 0 Iter. 1 Iter. 2
0| i0:Id
1
Prolog
2 | il: mult i0: Id
3| i3: add
4 | i4: sub i1: mult i0: Id
X Kernel
5| & pe | 13: add
6 i4: sub il: mult
i2: st
7 le ! i3: add
i5: bge Epilog
8 i4: sub
i2: st
9 i5: bge

A Software Pipelined Schedule with IT = 2

Y.N. Srikant Software Pipelining

Register Spilling in Software Pipelining

@ Register requirement is higher than the available no. of
registers

o
o
o

Spill a few variables to memory

Register spills need additional loads and stores

If the memory unit is saturated in the kernel, and additional
LD/STR cannot be scheduled

@ Il value needs to be increased and loop must be rescheduled
Reschedule loop with a larger Il but without inserting spills

@ Increased Il in general reduces register requirement of the
schedule

Generally, increasing Il produces worse schedules than
adding spill code

Y.N. Srikant Software Pipelining

Handling Loops With Multiple Basic Blocks

@ Hierarchical reduction

@ Two branches of a conditional are first scheduled

independently
@ Entire conditional is them treated as a single node

@ Resource requirements is union of the resource
requirements of the two branches

@ Length of schedule (latency) equal to the max of the lengths
of the branches

@ After the entire loop is scheduled, conditionals are
reinserted
@ |IF-Conversion and then scheduling the predicated code
(resource usage here is the sum of the usages of the two
branches)

Y.N. Srikant Software Pipelining

