
Energy-Aware
Software Systems

Y.N. Srikant
Computer Science and Automation

Indian Institute of Science
Bangalore

NPTEL Course on Compiler Design

Y.N. Srikant 2

Outline
1.

Motivation
2.

Energy-aware design: an introduction
3.

Clouds and Data Centers: A Case Study
4.

Power and Energy models
5.

OS and System/Application level optimizations
6.

Power-aware Networks
7.

Energy-efficiency of System Models
8.

Microarchitectural Techniques to save Energy in
CPU

9.

Compiler Techniques to save dynamic energy in CPU
10.

Compiler Techniques to save static energy in CPU
11.

Saving communication energy in CPU
12.

Energy-aware Memory
13.

Summary

Y.N. Srikant 3

Motivation
This set of lectures is designed to show
that optimizing energy consumption in
computer systems depends not only on the
compiler but also on other subsystems –
OS, network interface, memory, cache, etc.
In some way, this also shows the limitations
of what compiler optimizations can do!

Energy-Aware Design:
 An Introduction

Y.N. Srikant 5

Energy-aware design (1)
Design trade-off: Performance
v/s Power Consumption
Has received much attention in
recent years

Battery-operated mobile systems
Operating costs of large systems

A Data Warehouse with 8000 servers
needs 2 MW of power

Y.N. Srikant 6

Energy-aware design (2)
Energy-aware design does not
necessarily minimize power or energy,
e.g.,

It is possible to decrease peak power
consumption in a processor by delaying
issue of some instructions to smoothen
instruction issue distribution
But this may increase total power/energy
consumption due to extra time needed for
the execution of the application
This is a power-aware, but not low power
design

Y.N. Srikant 7

Energy-aware design (3)
Power and energy efficiency are
separate design goals

Clock rate reduction reduces power
demand, but may increase time and hence
energy

Power-constrained applications and
energy-constrained ones are distinct

Energy-constrained : e.g., running on
batteries (finite amount of energy)
Power-constrained : e.g., running on solar
power (finite amount of power)

Y.N. Srikant 8

Opportunities for saving
Energy -

Examples

Inside CPU – exploiting idleness
OS and device drivers manage power
of peripheral devices
Software controlled clock
management for on-board peripherals
and controllers
Memory controllers manage power of
memory subsystems

Y.N. Srikant 9

What is system-level
energy-aware design?
Includes power and energy modelling and
management issues at microarchitecture, compiler,
OS and networking layers of the system
Examples

Clustered design with local clock reduces the capacitance,
‘C ’ (micro-architecture)
Instruction scheduling reduces the activity factor, ‘a ’
(compiler)
OS level heuristic reduces ‘Vdd’ and ‘f ’, when peak
performance is not needed
Network layer puts network interface in standby mode
when it is not likely to receive any message

Y.N. Srikant 10

Energy-aware design: Effect
of shrinking device size

With each generational scaling of
feature size, more complex,
aggressive designs are used
These designs employ higher clock
frequencies, larger chip area, and a
much larger number of transistors

Y.N. Srikant 11

Energy-aware design: Effect
of shrinking device size

From
Mudge [18]

Y.N. Srikant 12

Energy-aware design: Effect
of shrinking device size

The result is a significant
increase in power dissipation
Conclusion: Shrinking device size
does not imply less power
dissipation

Y.N. Srikant 13

Energy-aware design: Effect
of power density on chips

Power density of Intel chipsFrom
Unsal et al. [4]

Y.N. Srikant 14

Energy-aware design: Effect
of power density in chips

Decreases reliability and life times of
chips
Decreases battery life
Increases production cost due to complex
cooling and packaging
Affects environment and also human body
Power density ultimately precludes further
scaling of CMOS chips

Y.N. Srikant 15

Techniques to achieve energy
savings at various levels

Y.N. Srikant 16

Where does the power go?

1 - most important, 3 - least important

(Sensors)

(Hand-held dev)

Clouds and Data Centers:
 A Case Study

Y.N. Srikant 18

Clouds and Datacenters (1)
Warehouse-sized computing systems
Cost of building datacenter facilities

Power capacity provisioning can be as expensive
as recurring energy consumption costs
Strong economic incentives to operate facilities
close to maximum

Non-recurring costs can be amortized

We do not consider power conversion
losses and power for cooling

Y.N. Srikant 19

Clouds and Datacenters (2)
Maintaining max capacity operation is hard in
practice

Uncertainties in equipment power ratings
Power consumption varies with actual computing activity

Effective power provisioning strategies are
needed to determine

How much computing equipment can be safely and
efficiently hosted within a given power budget

Business risk of exceeding max capacity
Should not result in outages or in
Costly violations of service agreements

Y.N. Srikant 20

Determining right deployment and
power management strategies

Requires understanding simultaneous power usage
characteristics of 1000’s of machines over time
Important factors

Rated max power of computing equipment is overly
conservative and not useful
Actual consumed power of servers varies significantly
with activity
Different applications exercise large-scale systems
differently

Hence, only monitoring of large-scale workloads
can yield insights into the aggregate load at the
datacenter level

Datacenter power
distribution hierarchy

Legend:
ATS: Automatic Transfer Switch
PDU: Power Distribution Unit
STS: Static Transfer Switch
UPS: Uninterruptible Power Suppy

From: Fan et al, Power Provisioning
for a Warehouse-sized Computer,
ISCA 2007.

Y.N. Srikant 22

Inefficient use of
power budget

Staged deployment
Facility is sized to accommodate business demand growth

Fragmentation
Addition of one more unit might exceed that level’s limit
and such unused capacities add up at the datacenter level

Conservative equipment ratings (60% more)
Variable load
Statistical effects

It is unlikely that large groups of systems will be at their
peak activity (therefore power) levels as the size of the
group increases

Y.N. Srikant 23

Power Estimation
Measure CPU usage (using
performance counters) and total
system power, and find a curve that
approximates system power against
CPU usage (see figure on next slide)
Needed for power capping

From: Fan et al, Power Provisioning
for a Warehouse-sized Computer,
ISCA 2007.

Power Estimation-
Model Fitting

From: Fan et al, Power Provisioning
for a Warehouse-sized Computer,
ISCA 2007.

estimated

measured

Power Estimation-
Modelled v/s Measured

From: Fan et al, Power Provisioning
for a Warehouse-sized Computer,
ISCA 2007.Well Tuned Loads

Cumulative
distribution
of time; for
“Even Mix”,
power diss.
never exceeds
85% of max;
for 80% of the
time, power
diss. is < 75%

From: Fan et al, Power Provisioning
for a Warehouse-sized Computer,
ISCA 2007.

Loads in a
Real Datacenter

Cumulative
distribution
of time

Y.N. Srikant 28

Power Capping
The system is under-provisioned most of the times
More processors can be added whenever max
power is not used
Loads can be monitored and whenever power
utilization tends to go beyond a cap, tasks can be
descheduled or dynamic voltage scaling can be
deployed

Works well with loose service level guarantees
About 45% increase in machine deployment with just 1%
of time spent in power capping mode
#trips beyond cap is 9 per month and average length of
trips is 48 minutes

Y.N. Srikant 29

Impact of dynamic voltage scaling
on energy savings at the
Data Centre Level

CPU utilization threshold

From: Fan et al, Power Provisioning for a Warehouse-
sized Computer, ISCA 2007.

Power and Energy Models

Y.N. Srikant 31

Power and Energy Models
Needed during early design space
exploration for power estimation

may not be very accurate but address
relative power efficiency

Required to perform optimizations in
compilers and OS

to estimate power and energy
consumption and savings

Y.N. Srikant 32

Instruction-

and Function-

 Level Power Models (1)
Assign a power cost to each assembly instruction
class
Experimentally measure current drawn by a
processor while executing a sequence of
instuctions
Many inter-instruction effects

e.g., cache hit/miss, pipeline interlock
Expensive

large number of inter-instruction effects
involves collecting and analyzing large instruction traces

Y.N. Srikant 33

Instruction-

and Function-

 Level Power Models (2)
Macro models characterizing the
average energy consumption of a
function or a group of functions
Example:

choose a quadratic power model,
an2+bn+c, say for insertion sort (n elem)
measure actual power dissipation for
different values of n
Use regression analysis to find a,b,c

Y.N. Srikant 34

Instruction-

and Function-

 Level Power Models (3)
Such high level models allow
designers to assess a number of
candidate architectures and
alternative software implementations
For detailed analysis and design,
power and energy models of main sub-
systems and components are needed

Y.N. Srikant 35

Micro-architectural Models
Built on top of cycle-accurate
simulators such as simplescalar (e.g.,
wattch simulator)
Measure static and dynamic power
consumption
High simulation time
Considers power dissipation due to
clock distribution also

Y.N. Srikant 36

Cache and Memory
Models (1)

CACTI (Cache Access and Cycle TIme)
simulator

Given cache hierarchy configuration (size,
associativity, #lines) and minimum feature size
of target technology

generates coarse structural design for such a cache
configuration
uses built-in models for various constituent elements

SRAM cells, row and column decoders, word and bit
lines, etc.

Makes hit/miss, power, and timing estimates for each
access

Y.N. Srikant 37

Cache and Memory
Models (2)

CACTI
Using memory traces generated by
simplescalar, it can generate access-based
power dissipation estimates

DINERO memory simulator
simulates memory accesses faithfully
provides timing information

Cache and memory simulation should be
combined with processor simulation for a
complete simulation

Y.N. Srikant 38

Bus and Interconnection
Models

Provide estimates of transfer time
and energy consumption
Model #segments and the details of
each segment based on technology
INTACTE

an interconnect modeling tool
enables co-design of interconnects with
other architectural components

Y.N. Srikant 39

Battery Models
Capacity (and hence lifetime)

non-linear function of current drawn
capacity = k/Iα

ampere-hours is a constant (apprx.)
Tradeoffs between quality, performance,
and duration of service can be implemented
at system level

by taking such non-linearity into account
however, this needs better battery models

Y.N. Srikant 40

CMOS Device-level
 Power dissipation basics (1)

Dynamic power dissipation
when a circuit performs the
functions it was designed for
currently dominant
depends on circuit
size/complexity, speed/rate,
and switching activity

Y.N. Srikant 41

CMOS Device-level
 Power dissipation basics (2)

Static power dissipation
needed to preserve the logic state of
circuits between switching activity
caused by sub-threshold leakage
mechanisms
increases dramatically with shrinking
device sizes
Significant for technologies below 70nm

Y.N. Srikant 42

CMOS Device-level
 Power dissipation basics (3)

Short-circuit power dissipation
can be controlled only by

superior technology
different semiconductor materials

due to through current during the
switching of a logic gate
usually less than 10% of dynamic power
in well-designed circuits and can be
ignored

Y.N. Srikant 43

CMOS Device-level
 Power dissipation basics (4)

Dynamic, static and short-circuit power
dissipation in a device (respectively)

PWdevice

= (½)

C VDD

Vswing

a f +Ileakage

VDD

+Isc

VDD

C : output capacitance, a : activity factor
VDD

: supply voltage, f : chip clock frequency
Vswing

: voltage swing across output capacitor
Ileakage

: leakage current
Isc

: average short circuit current

Y.N. Srikant 44

CMOS Device-level
 Power dissipation basics (5)

Ignore leakage power and short-circut
power
Usually, Vswing = VDD

PWchip

= (½)

ΣCi

Vi
2

ai

fi
Ci, Vi, ai, and fi are unit or block-specific
averages
Summation is over all units or blocks at the
microarchitecture level (I and D caches, I and
FP units, load-store units, register files, and
buses)

Y.N. Srikant 45

The Cube-root rule (1)
Assuming C as a constant (for a given
design), worst case activity (a=1), a
single voltage and frequency for the
whole chip, and that f = kV
PWchip

=

Kv

V 3

= Kf

f 3
where Kv

and Kf are design-specific
constants

Y.N. Srikant 46

The Cube-root rule (2)
This implies that voltage (hence
frequency) reduction is the single most
efficient method for reduction of power
dissipation
VDD cannot be reduced beyond a limit

lower Vdd implies lower threshold voltage to
maintain same performance
lower threshold leads to larger leakage.

Hence, voltage scaling combined with other
techniques needs to be employed to reduce
power consumption

Y.N. Srikant 47

Power-Performance metrics
–

MIPS/W metric (1)
Higher the number, the “better” the
machine

Okay for lower end machines
For lowest end m/c, extending battery
life even at the cost of performance may
be important
For servers, where power is not a severe
constraint, (MIPS)2/W or (MIPS)3/W
may be a better choice.

Y.N. Srikant 48

Power-Performance metrics
–

MIPS/W metric (2)
A higher MIPS/W machine, even
though more efficient, may offer a
lower level of performance

MIPS/W is 1/Energy-per-instruction
least energy per instruction is usually
obtained for very low voltages where
performance is also poor

Y.N. Srikant 49

Power-Performance
efficiencies (1)

From
Brookes et al. [2]

Y.N. Srikant 50

Power-Performance
efficiencies (2)

From
Brookes et al. [2]

Y.N. Srikant 51

Power-Performance metrics
– PDP and EDP

Power-delay product (PDP)
Suitable for low-power, portable
systems, where battery life is the
primary index of energy efficiency (PDP
is energy)
Analogous to MIPS/W

Energy-delay product (EDP)
Suitable for higher end systems
Analogous to (MIPS)2/W

Operating Systems and
System/Application level

Optimizations

Y.N. Srikant 53

Power-aware Operating
Systems

Dynamic voltage/frequency scaling
while scheduling tasks
Energy-aware scheduling
I/O Device control (on/off)
Middleware for coordinated
adaptation
…

Y.N. Srikant 54

The GRACE System
From
GRACE [6]

Y.N. Srikant 55

System/Application level
Optimizations (1)

It may be useful to explore different
task implementations during design

different power/energy versus quality of
service for the same functionality, cost,
battery etc.

tradeoff accuracy for energy savings in a
hand-held GPS system
image quality for energy savings in an image
decoder

Y.N. Srikant 56

System/Application level
Optimizations (2)

Such optimizations may be performed
under control of a system-level manager
(PM)

if battery level drops below a certain threshold
PM may drop certain services and/or
swap some tasks to less power hungry (lower quality)
software versions
PM may also shutdown/slowdown subsystems or
modules that are idling/under-utilized

normally implemented inside OS
examples: TinyOS, SOS

Y.N. Srikant 57

Advanced Configuration and
Power Interface (ACPI)

Interface between power managed modules
and PM

display drivers, modems, hard-disk drivers,
processors, network cards, etc.
2 power states – ACTIVE and STANDBY
power management policies

fixed timeout
predictive shutdown

use previous history of the subsystem to predict the
next expected idle time and based on this, decide to
shutdown or not

Power-aware Networks

Y.N. Srikant 59

Power-aware Networks
Energy impact on network topology and
broadcasting
Power-aware protocols
Routing optimizations in wireless LANs
Dynamic clustering of sensor networks
Energy-efficient packet forwarding in
wireless sensor networks
...

Y.N. Srikant 60

Low Power MAC Protocol for
Wireless Sensor Networks (1)

Sensors and actuators are integrated into the
environment and are powered by cheap batteries
Charging/changing batteries frequently is not
possible
RF transeiver is one of the biggest power
consumers in a sensor node
Power consumption for idle listening is almost
same as that of transmitting
If RF transeiver is in receive or transmit mode
only for 1% of the time (duty cycle), overall
system power can be reduced by about 50 times

Y.N. Srikant 61

Low Power MAC Protocol for
Wireless Sensor Networks (2)

Duty cycle scheduling
Synchronize the time when receivers are in
receive mode with the sending period of
transmitter
Small duty cycles lead to decreased synch
accuracy and increase in network latency
Large duty cycles imply more power
consumption
Tradeoff

Y.N. Srikant 62

IEEE 802.15.4 MAC Protocol

For master-slave star topology
Master broadcasts synchronization
information using a periodical beacon

beacon also mentions the slave to which master
has packets to send

Slaves sleep for most of the time
wake up simultaneously to listen to the beacon
Slave remains active if self is the target;
otherwise sleeps until the next beacon

Y.N. Srikant 63

IEEE 802.15.4 MAC Protocol

Not very efficient
cannot achieve very low duty cycles
serves only simple star topology with one
master

Many variations such as, Wake-Up-
Frame (WUF), WiseMAC, and
SyncWUF (combination of the first
two) are available

Y.N. Srikant 64

Power-Aware Routing Protocol
for Mobile Ad Hoc Networks

Routing protocols compute paths from
one node to another
Paths change due to mobility of nodes
Incorporating energy awareness in
routing protocols

route discovery and maintenance
procedures must compute and maintain
energy-efficient routes

Y.N. Srikant 65

CONSET: A Power-Aware
Routing Protocol for MANETs

Each node dynamically computes a connectivity set
(CS)

a reduced set of that node’s neighbourhood
guarantees the node’s connectivity to the rest of the
network

Transmission power of route request (RREQ)
messages is adjusted so that they are sent only to
the CS
The next-hop for a data transmission is selected
from the CS of that node
This may result in longer end-to-end paths
(#hops), but they will be more energy-efficient

Energy efficiency estimation
from System Models

Y.N. Srikant 67

Energy efficiency estimation from
System Models -

Algorithms

Different functionally equivalent
algorithms for the same platforms may be
made available (with differing energy
efficiencies)
Energy estimates of elementary operations
should be obtained by experimentation
Control Dataflow graphs may be used as an
algorithm representation
Hard to estimate due to dependence on
hardware

Y.N. Srikant 68

Energy-Efficient Programming:
Some Advice for ARM Processor

Prefer shifting to multiplication and
division by 2
Predicated (guarded) instructions are more
energy-efficient than branching
Table lookup is better than if-then-else
for large switch statements
Integer types are more energy-efficient
Pass function parameters in registers

Y.N. Srikant 69

Energy efficiency estimation from
System Models–

Task Graphs

Aim is to obtain minimal energy mapping
from a task graph to an architectural
template
Requires pre-characterization of power
consumption of each task on various
platforms and for various voltages
Overheads due to hardware resource
sharing by tasks are not easy to estimate

Microarchitectural
Techniques to save Energy

Y.N. Srikant 71

Microarchitectural Level
Power-aware Design

CPU
Voltage and frequency scaling
Supply voltage gating of function units
Clock gating of function Units
Bus encoding etc.

Memory
Drowsy cache
Compression in I-cache
Cache region reservation and partitioning
Scratchpad memory

Y.N. Srikant 72

CPU: Voltage Scaling
Reduction of voltage saves mostly dynamic
energy
In CMOS circuits, delay increases with
reduction in voltage
This in turn requires clock frequency
reduction
Intel’s XScale 80200 processor

voltage 1.0v to 1.5v in small increments
frequency 200 – 733 MHz in steps of 33/66
MHz
time for change in voltage: upto 1 ms

Y.N. Srikant 73

Static Voltage/Frequency
Scaling

Intel’s speedstep technology
detects if system is plugged into a power
outlet or is on batteries
accordingly runs processor at highest
v/f or less power-hungry mode

Y.N. Srikant 74

Dynamic Voltage Scaling
Possible at task level and done by OS
task scheduler
Modern day embedded processors
provide for DVS through program
instructions

Intel XScale, StrongARM, AMD Mobile
K6 Plus, Transmeta Crusoe, PowerPC
405LP

Y.N. Srikant 75

CPU Clock gating

Clock gating of Function Units
Make FU clock zero during idle
period
Reduces dynamic energy usage, but
static leakage remains
Both circuit-level techniques and
compiler techniques are possible

Y.N. Srikant 76

CPU: Voltage gating
Supply voltage gating of function units

FUs are switched off during idle periods
Saves static energy
Circuit level automatic techniques have
been proposed

Sense idle periods (based on history)
and act

Compiler optimization and program
control are possible (recommended)

Compiler Techniques to save
Dynamic Energy in CPU

Y.N. Srikant 78

Dynamic Workload Prediction
based V/F Scaling

Requires direct intervention of OS and/or
application itself
Interval based scheme

consider idle time on a previous interval as a
measure of processor’s utilization for the next
interval
use this to decide on the V/F settings to be
used throughout the next interval
a moving average of previous intervals may be
used to advantage

Y.N. Srikant 79

Compiler DVS –

Basic Idea

Parts of program operate at different
(V,f)
During CPU stall (awaiting completion of
memory operations)

scale down CPU voltage and freq
Save energy without performance degradation

Memory operations are assumed to be
asynchronous
0% – 25% energy savings with 0% - 3%
performance loss

Y.N. Srikant 80

Compiler DVS –

CPU Slack

operation
Memory

mem
T

Noverlap

non−overlapN

f

f

operation
CPU

CPU slack time

execution

time
= Tnon−overlap

= Toverlap

= T

−

− Toverlapmem

Y.N. Srikant 81

DVS –

An Algorithm

Partition program into “regions” based on
energy consumption at different (V,f)

2 regions: one at a lower frequency and the
other at fmax
Introduce frequency-changing instructions at
the entry and exit of the (lower freq) region

Finding best partitions is an optimization
problem
Time for frequency change: 100 memory
accesses (10-20 µs)

Y.N. Srikant 82

DVS -

Regions

Rationale: All top level statements inside a
region R are executed the same number of
times
Examples

Loop nest
Call site
A procedure
Sequence of statements
Entire program

Y.N. Srikant 83

DVS -

Constraint on

size of R
T (R , fmax) / T (P, fmax) ≥

ρ

(about 20%)

This ensures that
R is never too small
The time to execute R is longer than a single
DVS call

Very small ρ increases time penalty
Very large ρ decreases energy benefits

Y.N. Srikant 84

DVS –

The Minimization

Problem
minR,f

{ Pf .T (R,f) + Pfmax

. T (P-R, fmax

) +
Ptrans

.2 .N (R) }
subject to

{T (R,f) + T (P-R, fmax

) + Ttrans

.2 .N (R)}
≤

{(1 + r) .

T (P, fmax

)}

r : performance degradation tolerated (5%)

Y.N. Srikant 85

DVS -

Implementation

Code instrumentation for basic regions (call sites,
loops, if-else)

to measure T (R, f) accurately (using a high precision
timer) and N (R) at different frequencies

Pfmax is either measured directly or using a
simulator (Wattch)
Pf is obtained from Pfmax using interpolation
Combining basic regions using simple composition
rules
All the region combinations are enumerated and
the optimal one is chosen

Y.N. Srikant 86

DVS during Dynamic
Compilation

Identify hot methods using simple
profiling
Compute reduction in frequency as
proportional to relative CPU slack
time ((Tmem – Toverlap)/Ttotal)
Use performance counters to
compute the above

Y.N. Srikant 87

DVS during Dynamic
Compilation

Tmem /Ttotal ≈
k1

(#mem_bus_transactions)/
#µops_retired)

Toverlap /Ttotal ≈
k2

(#FP_INT_instructions)/
#µops_retired)

Y.N. Srikant 88

Dynamic Voltage Loop
Scheduling

Repeatedly regroup a loop based on
rotation scheduling
Decrease the energy by DVS as much
as possible within a timing constraint
Not necessarily for memory bound
programs

Original Loop Rotated Loop

Figures from:Shao, et al.,
IEEE TC&S, May 2007, p445-9

Original
Schedule

Schedule
after first
rotation

Schedule
after second
rotation

Schedule
after third
rotation

Figures from:Shao, et al., IEEE TC&S, May 2007, p445-9

Y.N. Srikant 91

Multiple Clock Domain
(MCD) Processors

Address difficult clock distribution
and power dissipation problems
Chip Partitioning: Each partition
(domain) functions at an independent
voltage and frequency
Needs synchronization circuits for
inter-domain communication

Y.N. Srikant 92

Multiple Clock Domain
(MCD) Processors (contd.)

Domains whose performance is non-
critical, can operate at lower voltage
and frequency: potentially less power
dissipation
Performance costs for
synchronization: not very significant
for out-of-order processors

Y.N. Srikant 93

An MCD Microarchitecture

From
Rangaswamy et al. [17]

Y.N. Srikant 94

Compiler based DVS for
MCD Processors

Builds a Timed Petrinet based program
performance model, parameterized by
microarchitectural settings and resource
configurations
Uses the model to evaluate performance impact
of different frequency settings for a program
region
Chooses a low frequency setting with acceptable
impact on performance, specified by the user
Uniquely and directly estimates performance
impact of a frequency setting, instead of
relying on weak indicators of performance

Y.N. Srikant 95

Results
SPEC FP: Many L2 misses; ED improvement
- CDVS saves 60.39%, while meeting
performance constraints; Profile-based
DVS saves 33.91%
Media Benchmarks: almost no L2 miss; ED2

improvement of CDVS (PDVS) : 22.11
(18.34%)
Hardware-based DVS saves less energy;
relatively better in media benchmarks
where queue occupancies of FP and LS
domain are low

Compiler Techniques to
save Static Energy in CPU

Y.N. Srikant 97

Motivation for Function
Unit Voltage Gating (1)

Leakage energy is the static
dissipation energy in CPU, cache, etc.

FUs are in active state, but are not
doing any useful work

With 70 nm technology, leakage
energy consumption will be on par
with dynamic energy consumption

Y.N. Srikant 98

Motivation for Function
Unit Voltage Gating (2)

Dual-threshold domino logic with
sleep mode can facilitate fast
transitions between active and sleep
modes without performance penalty
and with moderate energy penalty

Can put ALU into low leakage (sleep)
mode after even one cycle of idleness

IALUs are idle for 60% of the time
(on the average)

Y.N. Srikant 99

Motivation for Function
Unit Voltage Gating (3)

Pure hardware scheme (Dropsho et al)
has 26% energy overhead over ideal
scheme (no overhead)
frequent transitions between active and
sleep states

A software-based scheme aids the
hardware and together they save
more energy with little performance
loss

Y.N. Srikant 100

Compiler -

CPU function

unit voltage/clock gating
Try to bunch instructions which
use the same FUs so that
“active”and “idle”periods of FUs
are increased
CPU uses supply voltage/clock
gating during idle periods
Leads to better benefits and
saves transition energy

Y.N. Srikant 101

Instruction Scheduling
Reordering instructions

To reduce pipeline stalls
To exploit instruction level parallelism

NP-complete (with resource constraints
also handled)
Uses a DAG and is limited to basic blocks
List scheduling with a ready queue is the
most common approach

Y.N. Srikant 102

Clustered VLIW
Architectures

Y.N. Srikant 103

Energy-aware instruction
scheduling
An integrated energy-aware instruction
scheduling algorithm for clustered VLIW
architectures:

Reduces #transitions between active and
sleep states and increases the active/idle
periods
Reduces the total energy consumption of
FUs
Generates a more balanced schedule which
helps to reduce the peak power and step
power

Y.N. Srikant 104

The scheduling algorithm
for clustered VLIW

Makes cluster assignment decisions during
temporal scheduling
Basic block scheduler using list scheduling
Three main steps

Prioritizing the ready instructions
Assignment of a cluster to the selected
instruction
Assignment of an FU to the selected
instruction in the assigned target cluster

Y.N. Srikant 105

Prioritizing ready instructions

Priority = f (slack, #consumers)
Slack = Latest finish time - Earliest
start time
Slack is dynamically updated
The higher the slack, the lesser the
priority
Choose highest priority instruction
first

Y.N. Srikant 106

Cluster assignment and
function unit binding

Prefer a cluster that has an active
function unit of the type needed
Bind an active FU, if available
Otherwise, the FU in sleep mode for
a longer duration is woken up

only if instruction slack < threshold
otherwise, instruction is put back in the
ready queue

Y.N. Srikant 107

Example –

Dependence

Graph

Example –

Schedules 1 & 2

VLIW, one cluster, 2 MULs (2 cy latency), 2 ADDs (1 cy latency)

Traditional scheduler
(performance-oriented)

Energy-efficient
scheduler

•#Transitions has reduced (energy savings)
•Cycle to cycle variation in resource usage has reduced

•this reduces step and peak power dissipation

Example –

Schedules 1 & 2

M1 M2 A1 A2
Schedule 1 2 2 4 2 # transitions from low
Schedule 2 2 2 2 0 to high and vice-versa

Resource usage vectors
Schedule 1 (4,3,2,0,1,0,1,0)
Schedule 2 (2,2,2,1,2,1,1,0)

VLIW, two clusters, 1 MUL (2 cy latency), 1 ADD (1 cy latency) in each cluster

Traditional scheduler
(performance-oriented)

Energy-efficient
scheduler

In schedule 3, ADD3 (MPY3) is scheduled in cycle 3 (4) because a cycle is
needed to transfer the result of ADD2 (MPY2) from cluster 2 to cluster 1

Example –

Schedules 3 & 4

M1 M2 A1 A2
Schedule 3 2 2 4 2 # transitions from low
Schedule 4 2 0 2 0 to high and vice-versa

Resource usage vectors
Schedule 3 (4,2,1,2,0,1,0,1)
Schedule 4 (1,1,2,2,1,2,1,0)

Y.N. Srikant 110

Results
Comparison with hardware-only schemes
#Transitions reduce on the average by
58.29% (4-clusters)

Reduction in the #transitions is directly
proportional to the available slack

Average reduction in energy overhead is
16.92% (4 clusters)
Only 34% of the overall #idle periods are
now smaller than 10 cycles (48% in
Maxsleep)

Y.N. Srikant 111

Cumulative Distribution of
Idle Periods (in cycles)

 10

 20

 30

 40

 50

 60

 70

 10 20 30 40 50 60

MaxSlep
Optimized

Idle period (in cycles)

Cumulative
percentage

Y.N. Srikant 112

Energy Overhead (4-clusters)
w.r.t No-overhead Scheme

Saving Communication
Energy in CPU

Y.N. Srikant 114

CPU –

Optimization of
Communication Resources

Low swing signalling over buses
Saves power in capacitive charging
Reduces reliability (more errors)
Needs coding to increase redundancy

Data Encoding
Minimize average switching activity over
communication channel

Bus design – hierarchical seems better
Heterogeneous buses are possible

Y.N. Srikant 115

Compiler –

Reduction of switching
on the instruction bus

Hamming distance between two
consecutive instructions is
minimized
When instructions are fetched,
switching on the I-bus reduces
Instruction scheduling techniques
can be used here

Y.N. Srikant 116

Heterogeneous

Interconnects

An interconnect composed of two
sets of wires

one set optimized for latency and
another optimized for energy
less area than two sets of low
latency wires
Instr. scheduling can help to reduce
energy and maintain performance

Y.N. Srikant 117

Exploiting Heterogeneous
Interconnects

Selectively mapping communication to
the appropriate interconnect

urgent communications to
low latency (high energy) path

non-urgent communications to
high latency (low energy) path

identify urgent comm. using comm. slack
(60.88% of comm. have 3-cycle slack)
Increase in execution time is 1.11% and
reduction in comm. energy is 39% (both for
a 4-cluster processor)

Y.N. Srikant 118

INTACTE: An Interconnect Area,
Delay, and Energy Estimation Tool

Interconnects can consume power equiv. to
one core, area equiv. to three cores, and
delay can account for 0.5 of L2 cache
access time

Can be a major source of performance
bottleneck

We present an interconnect modeling tool
Enables co-design of interconnects with other
architectural components

Y.N. Srikant 119

INTACTE –

What?

Interconnect microarchitecture
exploration tool to estimate

Delay
Power

Technology, area, clock frequency
and latency are inputs

for point to point interconnect
Analogous to CACTI

Y.N. Srikant 120

INTACTE –

How?

Solves an optimization problem of
minimizing power by finding the
optimal values for

Wire width
Wire spacing
Repeater size
Repeater spacing

Y.N. Srikant 121

INTACTE -

More

Additional design variables - can be either
constraints or determined by the tool

Area
Pipelining

Voltage Scaling Support
Tool optimizes power and delay for nominal
(Maximum) supply
Power and Delay numbers reported

for 32 different voltage levels separated by 15 mV
from the nominal values

INTACTE Tool description (1)
The tool models the interconnect as consisting of
a set of identical, equal length pipeline stages
Each stage starts with a Flop driving a repeater
through a set of buffers followed by equally
spaced wire-repeater sections.
All parameters for the model are taken from
detailed HSPICE simulations and ITRS

FlopsRepeatersBuffers

Interconnect Length

numBits

Y.N. Srikant 123

INTACTE Tool description(2)
The parameters related to the flops, repeaters,
wires and buffers are pre-computed for 4
different technology nodes (90, 65, 45 and 32nm)
and 32 different supply voltages.
For each iteration of optimization, the tool
computes the power and delay for each wire-
repeater section.
These values are multiplied by #repeaters and
degree of pipelining and added to the pipelining
overhead to get the overall power and delay
numbers.
This reduces the size of the search space

Y.N. Srikant 124

Block Diagram of INTACTE
Tool Inputs

Technology
90,65, 45 & 32nm

Clock frequency
Length of
interconnect
Bit width
Supply
Delay (in cycles)
Activity Factor
Coupling Factor

Tool Outputs
Power, Delay versus

Area, Pipelining,
Supply

Y.N. Srikant 125

Experimental Results

Demonstrate the accuracy of
the tool

various trends in interconnect
power and performance have
been exhibited
detailed HSPICE simulations
have been carried out to validate
the results.

Y.N. Srikant 126

Architectural Tradeoff
Evaluation

Architectural tradeoffs in having two
heterogeneous wires can be evaluated
using our tool
Architect provides length, no. of bits,
target technology, operating voltage,
and delay estimates
Tool provides a set of possible
interconnect design options to choose
from

Y.N. Srikant 127

Interconnect Energy Savings

Energy-Aware Memory

Y.N. Srikant 129

Memory
Hierarchical memory design better

L0 – L1 – L2 – DRAM Bank
Sizes of lower level memories are smaller
Energy consumption per access

L0: 150 mW, L1: 300 mW, L2: 700 mW,
DRAM Bank: 12.71 W for a burst transaction
Smaller memories need less power per access

Memory could consume 50% more power
than processors

Y.N. Srikant 130

Memory models and control
Each RDRAM (Rambus DRAM) chip can be
activated separately
Supports standby, nap, and powerdown
modes
The Controller controls switching between
modes based on performance and
permitted slowdown
Hard disks can also be modelled and
controlled similarly

Variable speed drives are available too

Y.N. Srikant 131

Drowsy cache memory (1)
Cache memory lines may have

Clock gating
Supply voltage gating and scaling

Cache line gating may be at circuit level or at
program level
Switch off cache lines when not in use for a
certain number of cycles

this could be a fixed scheme or an adaptive scheme
useful for both I and D caches

Y.N. Srikant 132

Drowsy cache memory (2)
Compiler analysis is possible

identify critical data in a program and
place these in a hot cache (non-drowsy)
place non-critical data in a drowsy cache
Needs simple modifications to the
architecture to accommodate extra
information

Y.N. Srikant 133

Vertical Cache Partitioning:
A Filter Cache

A very small cache placed in front of L1
data cache
Most data will be accessed from filter
cache
L1 D-cache will be placed in standby mode
Good for applications with small working
sets (e.g., streaming media applications)

Y.N. Srikant 134

Vertical Cache Partitioning:
Pre-decoded Buffers and
Loop Buffers

Pre-decoded buffers
Store recently used instructions in an
instruction buffer in decoded form
Eliminates dynamic energy spent in
fetching and decoding

Loop buffers
Hold time-critical loop bodies in small
dedicated buffers

Y.N. Srikant 135

Horizontal Cache Partitioning:
Region-based Cache

Two small additional 2 KB L1 D-caches
one for stack and one for global data
dedicated decoding circuitry detects
data access to the appropriate cache

Substantial gain in dynamic energy
consumption for streaming media
application with negligible impact on
performance

Y.N. Srikant 136

Scratchpad memory
As fast as cache memory
No tag array, no comparisons

Consumes far lesser amount of energy than
cache

Software-controlled and needs efficient
allocation algorithms
Caters to both program and data objects
Energy benefits: 12% - 43%
Performance benefits: 7% - 23%
WCET can be performed accurately

Y.N. Srikant 137

A Simple SPM allocation
algorithm –

(1)

Single SPM, single memory
Memory segments

each global variable is a segment (locals
are not considered for SPM allocation)
each function (completely)

Formulated as a knapsack problem
and solved using integer programming

Y.N. Srikant 138

A Simple SPM allocation
algorithm –

(2)

Maximize G = Σ

(xi

* Egi

)
subject to Σ

(xi

* si

) ≤

K, where,
Egi

= energy gain resulting from
allocation of segment i to SPM

si

= size of memory segment i
K = total size of SPM
xi

= 1, if segment i

is mapped to SPM
= 0, otherwise

Y.N. Srikant 139

A Simple SPM allocation
algorithm –

(3)

Egi

= (Em

– Es

) * ni

Em

(Es

) = energy for one access
to main memory (SPM)

ni

= #memory accesses to
segment i

(obtained by static

analysis or profiling)

Y.N. Srikant 140

Extensions to the simple
SPM allocation algorithm

Extensions to include a hierarchy
of SPMs, basic blocks, stack
frames, etc., are not hard
Dynamic overlaying of memory
segments in SPM, based on life
times of segments is a non-trivial
extension

Y.N. Srikant 141

Summary
Energy optimizations are essential in
tomorrow’s electronic systems
Energy optimization of a computer system
should be carried out at all possible levels

Algorithm level, Micro-architecture level,
Compiler level, Operating system level, and
Network level.

Energy optimizations should be considered
at the design stage itself, and not as an
after-thought

Y.N. Srikant 142

Research Issues
DVS for memory banks and caches
DVS for speculative execution architectures
DVS for multi-core architectures
Cache reconfigurations

change associativity and size based on program analysis
Cache bank remapping for tiled architectures
Energy models for hardware transaction memory
Memory bank control
Energy-efficient OS kernel design

Y.N. Srikant 143

References (1)
1.

Power Reduction Techniques for Microprocessor
Systems, V. Venkatachalam, and M. Franz, ACM
Computing Surveys, Vol

37, No.3, September

2005.
2.

Power-Aware Microarchitecture, D.M. Brooks, et
al, IEEE Micro Nov-Dec 2000.

3.

System-Level Power Optimization Techniques
and Tools, L. Benini

and G. De Micheli, ACM

TODAES, Vol.5, No.2, April 2000.
4.

System-Level Power-Aware Design Techniques in
Real-Time Systems, O.S. Unsal, and I. Koren,
Proc.IEEE, July 2003.

Y.N. Srikant 144

References (2)
5.

Power-Aware Embedded Computing, M.F.
Jacome, and A. Ramachandran, in Embedded
Systems Handbook, CRC Press, 2009 (2nd

ed.).
6.

GRACE: A Hierarchical Adaptation Framework
for Saving Energy, D.G. Sachs et al, Tech.Rep.
UIUCDCS-R-2004-2409, CS Dept., UIUC, 2004.

7.

The Design, Implementation, and Evaluation of a
Compiler Algorithm for CPU Energy Reduction,

 C-H. Hsu and U. Kremer, PLDI 2003.
8.

Real-Time Dynamic Voltage Loop Scheduling for
Multi-core Embedded Systems,

Z. Shao, et al.,

 IEEE Tr.Circuits

& Systems, May 2007.

Y.N. Srikant 145

References (3)
9.

CONSET: A Cross-Layer Power Aware Protocol
for Mobile Ad Hoc Networks, V. Bhuvaneshwar,
et al., IEEE Communications, 2004, pp 4067-

 4071.
10.

SyncWUF: An Ultra Low-Power MAC Protocol
for Wireless Sensor Networks,

X. Shi, and G.

Stromberg, IEEE Tr. Mobile Computing, Vol. 6,
No. 1., Jan 2007.

11.

A Dynamic Compilation Framework for
Controlling Microprocessor Energy and
Performance,

Q. Wu, et al., MICRO-38, 2005.

12.

Power Provisioning for a Warehouse-sized
Computer, Fan et al, ISCA 2007.

Y.N. Srikant 146

References (4)
13.

INTACTE: An Interconnect Area, Delay, and Energy
Estimation Tool for Microarchitectural

Explorations,
Rahul

Nagpal, Arvind

Madan, Bharadwaj

Amrutur, and Y.N.
Srikant, CASES, October 2007.

14.

Compiler Assisted Leakage Energy Optimization for
Clustered VLIW Architectures,

Rahul

Nagpal, and Y.N.
Srikant, EMSOFT, October 2006.

15.

Energy-aware Compiler Optimizations, Y.N. Srikant, and K.
Ananda

Vardhan, in: The Compiler Design Handbook:
Optimization and Machine Code Generation, 2nd

ed., CRC
Press, 2008.

16.

Exploring Energy-Performance Tradeoffs for
Heterogeneous Interconnect Clustered VLIW Processors,

Rahul

Nagpal, and Y.N. Srikant, HiPC, December 2006.

Y.N. Srikant 147

References (5)
17.

Compiler-Directed Frequency and Voltage
Scaling for a Multiple Clock Domain
Microarchitecture,

R. Arun, Rahul

Nagpal,

and Y.N. Srikant, ACM Conference on
Computing Frontiers, 2008, pp 209-218.

18.

Power: A First-Class Architectural Design
Constraint, T.Mudge, IEEE Computer
April 2001.

Thank You
 Questions?

	Energy-Aware �Software Systems
	Outline
	Motivation
	Energy-Aware Design:�An Introduction
	Energy-aware design (1)
	Energy-aware design (2)
	Energy-aware design (3)
	Opportunities for saving Energy - Examples
	What is system-level �energy-aware design?
	Energy-aware design: Effect of shrinking device size
	Energy-aware design: Effect of shrinking device size
	Energy-aware design: Effect of shrinking device size
	�Energy-aware design: Effect of power density on chips
	Energy-aware design: Effect of power density in chips
	Techniques to achieve energy savings at various levels
	Where does the power go?
	Clouds and Data Centers:�A Case Study
	Clouds and Datacenters (1)
	Clouds and Datacenters (2)
	Determining right deployment and power management strategies
	Datacenter power distribution hierarchy
	Inefficient use of �power budget
	Power Estimation
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Power Capping
	Impact of dynamic voltage scaling on energy savings at the �Data Centre Level
	Power and Energy Models
	Power and Energy Models
	Instruction- and Function-Level Power Models (1)
	Instruction- and Function-Level Power Models (2)
	Instruction- and Function-Level Power Models (3)
	Micro-architectural Models
	Cache and Memory �Models (1)
	Cache and Memory �Models (2)
	Bus and Interconnection Models
	Battery Models
	CMOS Device-level�Power dissipation basics (1)
	CMOS Device-level�Power dissipation basics (2)
	CMOS Device-level�Power dissipation basics (3)
	CMOS Device-level�Power dissipation basics (4)
	CMOS Device-level�Power dissipation basics (5)
	The Cube-root rule (1)
	The Cube-root rule (2)
	Power-Performance metrics – MIPS/W metric (1)
	Power-Performance metrics – MIPS/W metric (2)
	Power-Performance efficiencies (1)
	Power-Performance efficiencies (2)
	Power-Performance metrics – PDP and EDP
	Operating Systems and System/Application level Optimizations
	Power-aware Operating Systems
	Slide Number 54
	System/Application level Optimizations (1)
	System/Application level Optimizations (2)
	Advanced Configuration and Power Interface (ACPI)
	Power-aware Networks
	Power-aware Networks
	Low Power MAC Protocol for Wireless Sensor Networks (1)
	Low Power MAC Protocol for Wireless Sensor Networks (2)
	IEEE 802.15.4 MAC Protocol
	IEEE 802.15.4 MAC Protocol
	Power-Aware Routing Protocol for Mobile Ad Hoc Networks
	CONSET: A Power-Aware Routing Protocol for MANETs
	Energy efficiency estimation from System Models
	Energy efficiency estimation from System Models - Algorithms
	Energy-Efficient Programming: Some Advice for ARM Processor
	Energy efficiency estimation from System Models– Task Graphs
	Microarchitectural Techniques to save Energy
	Microarchitectural Level Power-aware Design
	CPU: Voltage Scaling
	Static Voltage/Frequency Scaling
	Dynamic Voltage Scaling
	CPU Clock gating
	CPU: Voltage gating
	Compiler Techniques to save Dynamic Energy in CPU
	Dynamic Workload Prediction based V/F Scaling
	Compiler DVS – Basic Idea
	Compiler DVS – CPU Slack
	DVS – An Algorithm
	DVS - Regions
	DVS - Constraint on �size of R
	DVS – The Minimization Problem
	DVS - Implementation
	DVS during Dynamic Compilation
	DVS during Dynamic Compilation
	Dynamic Voltage Loop Scheduling
	Slide Number 89
	Slide Number 90
	Multiple Clock Domain (MCD) Processors
	Multiple Clock Domain (MCD) Processors (contd.)
	An MCD Microarchitecture
	Compiler based DVS for MCD Processors
	Results
	Compiler Techniques to save Static Energy in CPU
	Motivation for Function Unit Voltage Gating (1)
	Motivation for Function Unit Voltage Gating (2)
	Motivation for Function Unit Voltage Gating (3)
	Compiler - CPU function unit voltage/clock gating
	Instruction Scheduling
	Clustered VLIW Architectures
	Energy-aware instruction scheduling
	The scheduling algorithm for clustered VLIW
	Prioritizing ready instructions
	Cluster assignment and function unit binding
	Example – Dependence Graph
	Example – Schedules 1 & 2
	Slide Number 109
	Results
	Cumulative Distribution of �Idle Periods (in cycles)
	Energy Overhead (4-clusters) w.r.t No-overhead Scheme
	Saving Communication Energy in CPU
	CPU – Optimization of Communication Resources
	Compiler – Reduction of switching on the instruction bus
	Heterogeneous Interconnects
	Exploiting Heterogeneous Interconnects
	INTACTE: An Interconnect Area, Delay, and Energy Estimation Tool
	INTACTE – What?
	INTACTE – How?
	INTACTE - More
	INTACTE Tool description (1)
	INTACTE Tool description(2)
	Block Diagram of INTACTE
	Experimental Results
	Architectural Tradeoff Evaluation
	Interconnect Energy Savings
	Energy-Aware Memory
	Memory
	Memory models and control
	Drowsy cache memory (1)
	Drowsy cache memory (2)
	Vertical Cache Partitioning: A Filter Cache
	Vertical Cache Partitioning: �Pre-decoded Buffers and �Loop Buffers
	Horizontal Cache Partitioning: Region-based Cache
	Scratchpad memory
	A Simple SPM allocation algorithm – (1)
	A Simple SPM allocation algorithm – (2)
	A Simple SPM allocation algorithm – (3)
	Extensions to the simple SPM allocation algorithm
	Summary
	Research Issues
	References (1)
	References (2)
	References (3)
	References (4)
	References (5)
	Thank You�Questions?

