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Motivation
This set of lectures is designed to show 
that optimizing energy consumption in 
computer systems depends not only on the 
compiler but also on other subsystems –
OS, network interface, memory, cache, etc.
In some way, this also shows the limitations 
of what compiler optimizations can do!



Energy-Aware Design:
 An Introduction
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Energy-aware design (1)
Design trade-off: Performance 
v/s Power Consumption
Has received much attention in 
recent years

Battery-operated mobile systems
Operating costs of large systems

A Data Warehouse with 8000 servers 
needs 2 MW of power
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Energy-aware design (2)
Energy-aware design does not 
necessarily minimize power or energy, 
e.g.,

It is possible to decrease peak power 
consumption in a processor by delaying 
issue of some instructions to smoothen 
instruction issue distribution
But this may increase total power/energy 
consumption due to extra time needed for 
the execution of the application
This is a power-aware, but not low power 
design
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Energy-aware design (3)
Power and energy efficiency are 
separate design goals

Clock rate reduction reduces power 
demand, but may increase time and hence 
energy

Power-constrained applications and 
energy-constrained ones are distinct

Energy-constrained : e.g., running on 
batteries (finite amount of energy)
Power-constrained : e.g., running on solar 
power (finite amount of power)
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Opportunities for saving 
Energy -

 
Examples

Inside CPU – exploiting idleness
OS and device drivers manage power 
of peripheral devices
Software controlled clock 
management for on-board peripherals 
and controllers
Memory controllers manage power of 
memory subsystems
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What is system-level 
energy-aware design?
Includes power and energy modelling and 
management issues at microarchitecture, compiler, 
OS and networking layers of the system
Examples

Clustered design with local clock reduces the capacitance, 
‘C ’ (micro-architecture)
Instruction scheduling reduces the activity factor, ‘a ’
(compiler)
OS level heuristic reduces ‘Vdd’ and ‘f ’, when peak 
performance is not needed
Network layer puts network interface in standby mode 
when it is not likely to receive any message
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Energy-aware design: Effect 
of shrinking device size

With each generational scaling of 
feature size, more complex, 
aggressive designs are used
These designs employ higher clock 
frequencies, larger chip area, and a 
much larger number of transistors
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Energy-aware design: Effect 
of shrinking device size

From
Mudge [18]
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Energy-aware design: Effect 
of shrinking device size

The result is a significant 
increase in power dissipation
Conclusion: Shrinking device size 
does not imply less power 
dissipation
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Energy-aware design: Effect 
of power density on chips

Power density of Intel chipsFrom 
Unsal et al. [4]
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Energy-aware design: Effect 
of power density in chips

Decreases reliability and life times of 
chips
Decreases battery life
Increases production cost due to complex 
cooling and packaging
Affects environment and also human body
Power density ultimately precludes further 
scaling of CMOS chips
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Techniques to achieve energy 
savings at various levels
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Where does the power go?

1 - most important, 3 - least important

(Sensors)

(Hand-held dev)



Clouds and Data Centers:
 A Case Study
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Clouds and Datacenters (1)
Warehouse-sized computing systems
Cost of building datacenter facilities

Power capacity provisioning can be as expensive 
as recurring energy consumption costs
Strong economic incentives to operate facilities 
close to maximum

Non-recurring costs can be amortized

We do not consider power conversion 
losses and power for cooling
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Clouds and Datacenters (2)
Maintaining max capacity operation is hard in 
practice

Uncertainties in equipment power ratings
Power consumption varies with actual computing activity

Effective power provisioning strategies are 
needed to determine

How much computing equipment can be safely and 
efficiently hosted within a given power budget

Business risk of exceeding max capacity 
Should not result in outages or in
Costly violations of service agreements
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Determining right deployment and 
power management strategies

Requires understanding simultaneous power usage 
characteristics of 1000’s of machines over time
Important factors

Rated max power of computing equipment is overly 
conservative and not useful
Actual consumed power of servers varies significantly 
with activity
Different applications exercise large-scale systems 
differently

Hence, only monitoring of large-scale workloads 
can yield insights into the aggregate load at the 
datacenter level



Datacenter power 
distribution hierarchy

Legend:
ATS: Automatic Transfer Switch
PDU: Power Distribution Unit
STS: Static Transfer Switch
UPS: Uninterruptible Power Suppy

From: Fan et al, Power Provisioning
for a Warehouse-sized Computer,
ISCA 2007.
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Inefficient use of 
power budget

Staged deployment
Facility is sized to accommodate business demand growth

Fragmentation
Addition of one more unit might exceed that level’s limit 
and such unused capacities add up at the datacenter level

Conservative equipment ratings (60% more)
Variable load
Statistical effects

It is unlikely that large groups of systems will be at their 
peak activity (therefore power) levels as the size of the 
group increases
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Power Estimation
Measure CPU usage (using 
performance counters) and total 
system power, and find a curve that 
approximates system power against 
CPU usage (see figure on next slide)
Needed for power capping



From: Fan et al, Power Provisioning
for a Warehouse-sized Computer,
ISCA 2007.

Power Estimation-
Model Fitting



From: Fan et al, Power Provisioning
for a Warehouse-sized Computer,
ISCA 2007.

estimated

measured

Power Estimation-
Modelled v/s Measured



From: Fan et al, Power Provisioning
for a Warehouse-sized Computer,
ISCA 2007.Well Tuned Loads

Cumulative
distribution
of time; for
“Even Mix”,
power diss.
never exceeds
85% of max;
for 80% of the
time, power
diss. is < 75%



From: Fan et al, Power Provisioning
for a Warehouse-sized Computer,
ISCA 2007.

Loads in a 
Real Datacenter

Cumulative
distribution
of time
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Power Capping
The system is under-provisioned most of the times
More processors can be added whenever max 
power is not used
Loads can be monitored and whenever power 
utilization tends to go beyond a cap, tasks can be 
descheduled or dynamic voltage scaling can be 
deployed

Works well with loose service level guarantees
About 45% increase in machine deployment with just 1% 
of time spent in power capping mode
#trips beyond cap is 9 per month and average length of 
trips is 48 minutes
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Impact of dynamic voltage scaling 
on energy savings at the 
Data Centre Level

CPU utilization threshold

From: Fan et al, Power Provisioning for a Warehouse- 
sized Computer, ISCA 2007.



Power and Energy Models
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Power and Energy Models
Needed during early design space 
exploration for power estimation

may not be very accurate but address 
relative power efficiency

Required to perform optimizations in 
compilers and OS

to estimate power and energy 
consumption and savings
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Instruction-
 
and Function-

 Level Power Models (1)
Assign a power cost to each assembly instruction 
class
Experimentally measure current drawn by a 
processor while executing a sequence of 
instuctions
Many inter-instruction effects

e.g., cache hit/miss, pipeline interlock
Expensive

large number of inter-instruction effects
involves collecting and analyzing large instruction traces
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Instruction-
 
and Function-

 Level Power Models (2)
Macro models characterizing the 
average energy consumption of a 
function or a group of functions 
Example:

choose a quadratic power model, 
an2+bn+c, say for insertion sort (n elem)
measure actual power dissipation for 
different values of n
Use regression analysis to find a,b,c
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Instruction-
 
and Function-

 Level Power Models (3)
Such high level models allow 
designers to assess a number of 
candidate architectures and 
alternative software implementations
For detailed analysis and design, 
power and energy models of main sub-
systems and components are needed
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Micro-architectural Models
Built on top of cycle-accurate 
simulators such as simplescalar (e.g., 
wattch simulator)
Measure static and dynamic power 
consumption
High simulation time
Considers power dissipation due to 
clock distribution also
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Cache and Memory 
Models (1)

CACTI (Cache Access and Cycle TIme) 
simulator

Given cache hierarchy configuration (size, 
associativity, #lines) and minimum feature size 
of target technology

generates coarse structural design for such a cache 
configuration
uses built-in models for various constituent elements

SRAM cells, row and column decoders, word and bit 
lines, etc.

Makes hit/miss, power, and timing estimates for each 
access
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Cache and Memory 
Models (2)

CACTI
Using memory traces generated by 
simplescalar, it can generate access-based 
power dissipation estimates

DINERO memory simulator 
simulates memory accesses faithfully
provides timing information

Cache and memory simulation should be 
combined with processor simulation for a 
complete simulation
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Bus and Interconnection 
Models

Provide estimates of transfer time 
and energy consumption
Model #segments and the details of 
each segment based on technology
INTACTE 

an interconnect modeling tool 
enables co-design of interconnects with 
other architectural components
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Battery Models
Capacity (and hence lifetime)

non-linear function of current drawn
capacity = k/Iα

ampere-hours is a constant (apprx.)
Tradeoffs between quality, performance, 
and duration of service can be implemented 
at system level

by taking such non-linearity into account
however, this needs better battery models
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CMOS Device-level
 Power dissipation basics (1)

Dynamic power dissipation
when a circuit performs the 
functions it was designed for 
currently dominant
depends on circuit 
size/complexity, speed/rate, 
and switching activity



Y.N. Srikant 41

CMOS Device-level
 Power dissipation basics (2)

Static power dissipation 
needed to preserve the logic state of 
circuits between switching activity
caused by sub-threshold leakage 
mechanisms
increases dramatically with shrinking 
device sizes
Significant for technologies below 70nm
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CMOS Device-level
 Power dissipation basics (3)

Short-circuit power dissipation
can be controlled only by 

superior technology
different semiconductor materials

due to through current during the 
switching of a logic gate
usually less than 10% of dynamic power 
in well-designed circuits and can be 
ignored 
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CMOS Device-level
 Power dissipation basics (4)

Dynamic, static and short-circuit power 
dissipation in a device (respectively)

PWdevice

 

= (½)
 

C VDD

 

Vswing

 

a f +Ileakage

 

VDD

 

+Isc

 

VDD

C : output capacitance, a : activity factor
VDD

 

: supply voltage, f : chip clock frequency
Vswing

 

: voltage swing across output capacitor
Ileakage

 

: leakage current
Isc

 

: average short circuit current
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CMOS Device-level
 Power dissipation basics (5)

Ignore leakage power and short-circut 
power
Usually, Vswing = VDD

PWchip

 

= (½)
 
ΣCi

 

Vi
2

 
ai

 

fi
Ci, Vi, ai, and fi are unit or block-specific 
averages
Summation is over all units or blocks at the 
microarchitecture level (I and D caches, I and 
FP units, load-store units, register files, and 
buses)
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The Cube-root rule (1)
Assuming C as a constant (for a given 
design), worst case activity (a=1), a 
single voltage and frequency for the 
whole chip, and that f = kV
PWchip

 

=
 

Kv
 

V 3
 

= Kf
 

f 3
where Kv

 

and Kf are design-specific 
constants
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The Cube-root rule (2)
This implies that voltage (hence 
frequency) reduction is the single most 
efficient method for reduction of power 
dissipation
VDD cannot be reduced beyond a limit 

lower Vdd implies lower threshold voltage to 
maintain same performance
lower threshold leads to larger leakage. 

Hence, voltage scaling combined with other 
techniques needs to be employed to reduce 
power consumption
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Power-Performance metrics 
–

 
MIPS/W metric (1)
Higher the number, the “better” the 
machine

Okay for lower end machines
For lowest end m/c, extending battery 
life even at the cost of performance may 
be important
For servers, where power is not a severe 
constraint, (MIPS)2/W or (MIPS)3/W 
may be a better choice. 
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Power-Performance metrics 
–

 
MIPS/W metric (2)
A higher MIPS/W machine, even 
though more efficient, may offer a 
lower level of performance

MIPS/W is  1/Energy-per-instruction
least energy per instruction is usually 
obtained for very low voltages where 
performance is also poor 
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Power-Performance 
efficiencies (1)

From 
Brookes et al. [2]
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Power-Performance 
efficiencies (2)

From 
Brookes et al. [2]
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Power-Performance metrics 
– PDP and EDP

Power-delay product (PDP)
Suitable for low-power, portable 
systems, where battery life is the 
primary index of energy efficiency (PDP 
is energy)
Analogous to MIPS/W

Energy-delay product (EDP)
Suitable for higher end systems
Analogous to (MIPS)2/W



Operating Systems and 
System/Application level 

Optimizations
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Power-aware Operating 
Systems

Dynamic voltage/frequency scaling 
while scheduling tasks
Energy-aware scheduling
I/O Device control (on/off)
Middleware for coordinated 
adaptation
…
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The GRACE System
From 
GRACE [6]



Y.N. Srikant 55

System/Application level 
Optimizations (1)

It may be useful to explore different 
task implementations during design

different power/energy versus quality of 
service for the same functionality, cost, 
battery etc.

tradeoff accuracy for energy savings in a 
hand-held GPS system
image quality for energy savings in an image 
decoder
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System/Application level 
Optimizations (2)

Such optimizations may be performed 
under control of a system-level manager 
(PM)

if battery level drops below a certain threshold 
PM may drop certain services and/or
swap some tasks to less power hungry (lower quality) 
software versions
PM may also shutdown/slowdown subsystems or 
modules that are idling/under-utilized

normally implemented inside OS
examples: TinyOS, SOS
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Advanced Configuration and 
Power Interface (ACPI)

Interface between power managed modules 
and PM

display drivers, modems, hard-disk drivers, 
processors, network cards, etc.
2 power states – ACTIVE and STANDBY
power management policies

fixed timeout
predictive shutdown

use previous history of the subsystem to predict the 
next expected idle time and based on this,  decide to 
shutdown or not



Power-aware Networks



Y.N. Srikant 59

Power-aware Networks
Energy impact on network topology and 
broadcasting
Power-aware protocols
Routing optimizations in wireless LANs
Dynamic clustering of sensor networks
Energy-efficient packet forwarding in 
wireless sensor networks
...
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Low Power MAC Protocol for 
Wireless Sensor Networks (1)

Sensors and actuators are integrated into the 
environment and are powered by cheap batteries
Charging/changing batteries frequently is not 
possible
RF transeiver is one of the biggest power 
consumers in a sensor node
Power consumption for idle listening is almost 
same as that of transmitting
If RF transeiver is in receive or transmit mode 
only for 1% of the time (duty cycle), overall 
system power can be reduced by about 50 times
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Low Power MAC Protocol for 
Wireless Sensor Networks (2)

Duty cycle scheduling
Synchronize the time when receivers are in 
receive mode with the  sending period of 
transmitter
Small duty cycles lead to decreased synch 
accuracy and increase in network latency
Large duty cycles imply more power 
consumption
Tradeoff
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IEEE 802.15.4 MAC Protocol

For master-slave star topology
Master broadcasts synchronization 
information using a periodical beacon

beacon also mentions the slave to which master 
has packets to send 

Slaves sleep for most of the time 
wake up simultaneously to listen to the beacon 
Slave remains active if self is the target; 
otherwise sleeps until the next beacon
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IEEE 802.15.4 MAC Protocol

Not very efficient
cannot achieve very low duty cycles
serves only simple star topology with one 
master

Many variations such as, Wake-Up-
Frame (WUF), WiseMAC, and 
SyncWUF (combination of the first 
two) are available
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Power-Aware Routing Protocol 
for Mobile Ad Hoc Networks

Routing protocols compute paths from 
one node to another
Paths change due to mobility of nodes
Incorporating energy awareness in 
routing protocols 

route discovery and maintenance 
procedures must compute and maintain 
energy-efficient routes
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CONSET: A Power-Aware 
Routing Protocol for MANETs

Each node dynamically computes a connectivity set 
(CS)

a reduced set of that node’s neighbourhood
guarantees the node’s connectivity to the rest of the 
network

Transmission power of route request (RREQ) 
messages is adjusted so that they are sent only to 
the CS
The next-hop for a data transmission  is selected 
from the CS of that node
This may result in longer end-to-end paths 
(#hops), but they will be more energy-efficient



Energy efficiency estimation 
from System Models
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Energy efficiency estimation from 
System Models -

 
Algorithms

Different functionally equivalent 
algorithms for the same platforms may be 
made available (with differing energy 
efficiencies)
Energy estimates of elementary operations 
should be obtained by experimentation
Control Dataflow graphs may be used as an 
algorithm representation
Hard to estimate due to dependence on 
hardware
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Energy-Efficient Programming: 
Some Advice for ARM Processor

Prefer shifting to multiplication and 
division by 2
Predicated (guarded) instructions are more 
energy-efficient than branching
Table lookup is better than if-then-else 
for large switch statements
Integer types are more energy-efficient
Pass function parameters in registers
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Energy efficiency estimation from 
System Models–

 
Task Graphs

Aim is to obtain minimal energy mapping 
from a task graph to an architectural 
template
Requires pre-characterization of power 
consumption of each task on various 
platforms and for various voltages
Overheads due to hardware resource 
sharing by tasks are not easy to estimate



Microarchitectural 
Techniques to save Energy
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Microarchitectural Level 
Power-aware Design

CPU 
Voltage and frequency scaling
Supply voltage gating of function units
Clock gating of function Units
Bus encoding etc.

Memory
Drowsy cache
Compression in I-cache
Cache region reservation and partitioning
Scratchpad memory
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CPU: Voltage Scaling
Reduction of voltage saves mostly dynamic 
energy
In CMOS circuits, delay increases with 
reduction in voltage
This in turn requires clock frequency 
reduction
Intel’s XScale 80200 processor

voltage 1.0v to 1.5v in small increments
frequency 200 – 733 MHz in steps of 33/66 
MHz
time for change in voltage: upto 1 ms
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Static Voltage/Frequency 
Scaling

Intel’s speedstep technology
detects if system is plugged into a power 
outlet or is on batteries
accordingly runs processor at highest 
v/f or less power-hungry mode
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Dynamic Voltage Scaling
Possible at task level and done by OS 
task scheduler
Modern day embedded processors 
provide for DVS through program 
instructions

Intel XScale, StrongARM, AMD Mobile 
K6 Plus, Transmeta Crusoe, PowerPC 
405LP
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CPU Clock gating

Clock gating of Function Units
Make FU clock zero during idle 
period
Reduces dynamic energy usage, but 
static leakage remains
Both circuit-level techniques and 
compiler techniques are possible
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CPU: Voltage gating
Supply voltage gating of function units

FUs are switched off during idle periods
Saves static energy
Circuit level automatic techniques have 
been proposed

Sense idle periods (based on history) 
and act

Compiler optimization and program 
control  are possible (recommended)



Compiler Techniques to save 
Dynamic Energy in CPU
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Dynamic Workload Prediction 
based V/F Scaling

Requires direct intervention of OS and/or 
application itself
Interval based scheme

consider idle time on a previous interval as a 
measure of processor’s utilization for the next 
interval
use this to decide on the V/F settings to be 
used  throughout the next interval
a moving average of previous intervals may be 
used to advantage
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Compiler DVS –
 
Basic Idea

Parts of program operate at different 
(V,f)
During CPU stall (awaiting completion of 
memory operations)

scale down CPU voltage and freq
Save energy without performance degradation

Memory operations are assumed to be 
asynchronous
0% – 25% energy savings with 0% - 3% 
performance loss
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Compiler DVS –
 
CPU Slack

operation
Memory

mem
T

Noverlap

non−overlapN

f

f

operation
CPU

CPU slack time

execution

time
= Tnon−overlap

= Toverlap

= T

−

− Toverlapmem
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DVS –
 
An Algorithm

Partition program into “regions” based on 
energy consumption at different (V,f)

2 regions: one at a lower frequency and the 
other at fmax
Introduce frequency-changing instructions at 
the entry and exit of the (lower freq) region 

Finding best partitions is an optimization 
problem 
Time for frequency change: 100 memory 
accesses (10-20 µs)
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DVS -
 
Regions

Rationale: All top level statements inside a 
region R are executed the same number of 
times
Examples

Loop nest
Call site
A procedure
Sequence of statements
Entire program
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DVS -
 
Constraint on 

size of R
T (R , fmax ) / T (P, fmax ) ≥

 
ρ

 
(about 20%)

This ensures that
R is never too small
The time to execute R is longer than a single 
DVS call

Very small ρ increases time penalty
Very large ρ decreases energy benefits
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DVS –
 
The Minimization 

Problem
minR,f

 

{ Pf .T (R,f) + Pfmax

 

. T (P-R, fmax

 

) +
Ptrans

 

.2 .N (R) }
subject to

{T (R,f) + T (P-R, fmax

 

) + Ttrans

 

.2 .N (R)}
≤

 
{(1 + r ) .

 
T (P, fmax

 

)}

r : performance degradation tolerated (5%)
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DVS -
 
Implementation

Code instrumentation for basic regions (call sites, 
loops, if-else)

to measure T (R, f ) accurately (using a high precision 
timer) and N (R) at different frequencies

Pfmax is either measured directly or using a 
simulator (Wattch )
Pf is obtained from Pfmax using interpolation
Combining basic regions using simple composition 
rules
All the region combinations are enumerated and 
the optimal one is chosen
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DVS during Dynamic 
Compilation

Identify hot methods using simple 
profiling
Compute reduction in frequency as 
proportional to relative CPU slack 
time ((Tmem – Toverlap)/Ttotal)
Use performance counters to 
compute the above
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DVS during Dynamic 
Compilation

Tmem /Ttotal ≈
k1

 

(#mem_bus_transactions)/
#µops_retired)

Toverlap /Ttotal ≈
k2

 

(#FP_INT_instructions)/
#µops_retired)
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Dynamic Voltage Loop 
Scheduling

Repeatedly regroup a loop based on 
rotation scheduling
Decrease the energy by DVS as much 
as possible within a timing constraint
Not necessarily for memory bound 
programs



Original Loop Rotated Loop

Figures from:Shao, et al., 
IEEE TC&S, May 2007, p445-9



Original
Schedule

Schedule
after first
rotation

Schedule
after second
rotation

Schedule
after third
rotation

Figures from:Shao, et al., IEEE TC&S, May 2007, p445-9
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Multiple Clock Domain 
(MCD) Processors

Address difficult clock distribution 
and power dissipation problems
Chip Partitioning: Each partition 
(domain) functions at an independent 
voltage and frequency
Needs synchronization circuits for 
inter-domain communication
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Multiple Clock Domain 
(MCD) Processors (contd.)

Domains whose performance is non-
critical, can operate at lower voltage 
and frequency: potentially less power 
dissipation
Performance costs for 
synchronization: not very significant 
for out-of-order processors
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An MCD Microarchitecture

From 
Rangaswamy et al. [17]
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Compiler based DVS for 
MCD Processors

Builds a Timed Petrinet based program 
performance model, parameterized by 
microarchitectural settings and resource 
configurations
Uses the model to evaluate performance impact 
of different frequency settings for a program 
region
Chooses a low frequency setting with acceptable 
impact on performance, specified by the user
Uniquely and directly estimates performance 
impact of a frequency setting, instead of 
relying on weak indicators of performance
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Results
SPEC FP: Many L2 misses; ED improvement 
- CDVS saves 60.39%, while meeting 
performance constraints; Profile-based 
DVS saves 33.91%
Media Benchmarks: almost no L2 miss; ED2

improvement of CDVS (PDVS) : 22.11 
(18.34%)
Hardware-based DVS saves less energy; 
relatively better in media benchmarks 
where queue occupancies of FP and LS 
domain are low



Compiler Techniques to 
save Static Energy in CPU
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Motivation for Function 
Unit Voltage Gating (1)

Leakage energy is the static 
dissipation energy in CPU, cache, etc.

FUs are in active state, but are not 
doing any useful work

With 70 nm technology, leakage 
energy consumption will be on par 
with dynamic energy consumption
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Motivation for Function 
Unit Voltage Gating (2)

Dual-threshold domino logic with 
sleep mode can facilitate fast 
transitions between active and sleep 
modes without performance penalty 
and with moderate energy penalty

Can put ALU into low leakage (sleep) 
mode after even one cycle of idleness

IALUs are idle for 60% of the time 
(on the average)
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Motivation for Function 
Unit Voltage Gating (3)

Pure hardware scheme (Dropsho et al)
has 26% energy overhead over ideal
scheme (no overhead)
frequent transitions between active and 
sleep states

A software-based scheme aids the 
hardware and together they save 
more energy with little performance 
loss
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Compiler -
 
CPU function 

unit voltage/clock gating
Try to bunch instructions which 
use the same FUs so that 
“active”and “idle”periods of FUs 
are increased
CPU uses supply voltage/clock 
gating during idle periods
Leads to better benefits and 
saves transition energy
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Instruction Scheduling
Reordering instructions 

To reduce pipeline stalls
To exploit instruction level parallelism

NP-complete (with resource constraints 
also handled)
Uses a DAG and is limited to basic blocks
List scheduling with a ready queue is the 
most common approach
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Clustered VLIW 
Architectures
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Energy-aware instruction 
scheduling
An integrated energy-aware instruction 
scheduling algorithm for clustered VLIW
architectures:

Reduces #transitions between active and 
sleep states and increases the active/idle 
periods
Reduces the total energy consumption of 
FUs
Generates a more balanced schedule which 
helps to reduce the peak power and step 
power
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The scheduling algorithm 
for clustered VLIW

Makes cluster assignment decisions during 
temporal scheduling
Basic block scheduler using list scheduling
Three main steps

Prioritizing the ready instructions
Assignment of a cluster to the selected 
instruction
Assignment of an FU to the selected 
instruction in the assigned target cluster
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Prioritizing ready instructions

Priority = f (slack, #consumers)
Slack = Latest finish time - Earliest 
start time
Slack is dynamically updated
The higher the slack, the lesser the 
priority
Choose highest priority instruction 
first
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Cluster assignment and 
function unit binding

Prefer a cluster that has an active
function unit of the type needed
Bind an active FU, if available
Otherwise, the FU in sleep mode for 
a longer duration is woken up 

only if instruction slack < threshold
otherwise, instruction is put back in the 
ready queue
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Example –
 
Dependence 

Graph



Example –
 
Schedules 1 & 2

VLIW, one cluster, 2 MULs (2 cy latency), 2 ADDs (1 cy latency)

Traditional scheduler
(performance-oriented)

Energy-efficient
scheduler

•#Transitions has reduced (energy savings)
•Cycle to cycle variation in resource usage has reduced

•this reduces step and peak power dissipation

Example –
 
Schedules 1 & 2

M1 M2 A1 A2
Schedule 1  2   2    4   2    # transitions from low  
Schedule 2  2   2    2   0    to high and vice-versa

Resource usage vectors
Schedule 1 (4,3,2,0,1,0,1,0)   
Schedule 2 (2,2,2,1,2,1,1,0)



VLIW, two clusters, 1 MUL (2 cy latency), 1 ADD (1 cy latency) in each cluster

Traditional scheduler
(performance-oriented)

Energy-efficient
scheduler

In schedule 3, ADD3 (MPY3) is scheduled in cycle 3 (4) because a cycle is
needed to transfer the result of ADD2 (MPY2) from cluster 2 to cluster 1

Example –
 
Schedules 3 & 4

M1 M2 A1 A2
Schedule 3  2   2    4   2    # transitions from low     
Schedule 4  2   0    2   0    to high and vice-versa

Resource usage vectors
Schedule 3 (4,2,1,2,0,1,0,1)   
Schedule 4 (1,1,2,2,1,2,1,0)
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Results
Comparison with hardware-only schemes
#Transitions reduce on the average by 
58.29% (4-clusters)

Reduction in the #transitions is directly 
proportional to the available slack

Average reduction in energy overhead is 
16.92% (4 clusters) 
Only 34% of the overall #idle periods are 
now smaller than 10 cycles (48% in 
Maxsleep)
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Cumulative Distribution of 
Idle Periods (in cycles)
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Energy Overhead (4-clusters) 
w.r.t No-overhead Scheme



Saving Communication 
Energy in CPU
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CPU –
 

Optimization of 
Communication Resources

Low swing signalling over buses
Saves power in capacitive charging
Reduces reliability (more errors)
Needs coding to increase redundancy

Data Encoding
Minimize average switching activity over 
communication channel

Bus design – hierarchical seems better
Heterogeneous buses are possible
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Compiler –
 

Reduction of switching 
on the instruction bus

Hamming distance between two 
consecutive instructions is 
minimized
When instructions are fetched, 
switching on the I-bus reduces
Instruction scheduling techniques 
can be used here
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Heterogeneous
 
Interconnects

An interconnect composed of two 
sets of wires

one set optimized for latency and 
another optimized for energy
less area than two sets of low 
latency wires
Instr. scheduling can help to reduce 
energy and maintain performance
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Exploiting Heterogeneous 
Interconnects

Selectively mapping communication to 
the appropriate interconnect

urgent communications to
low latency (high energy) path

non-urgent communications to
high latency (low energy) path

identify urgent comm. using comm. slack 
(60.88% of comm. have 3-cycle slack)
Increase in execution time is 1.11% and 
reduction in comm. energy is 39% (both for 
a 4-cluster processor)
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INTACTE: An Interconnect Area, 
Delay, and Energy Estimation Tool

Interconnects can consume power equiv. to 
one core, area equiv. to three cores, and 
delay can account for 0.5 of L2 cache 
access time

Can be a major source of performance 
bottleneck

We present an interconnect modeling tool 
Enables co-design of interconnects with other 
architectural components
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INTACTE –
 
What?

Interconnect microarchitecture
exploration tool to estimate

Delay 
Power 

Technology, area, clock frequency 
and latency are inputs

for point to point interconnect
Analogous to CACTI
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INTACTE –
 
How?

Solves an optimization problem of 
minimizing power by finding the 
optimal values for

Wire width
Wire spacing
Repeater size
Repeater spacing
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INTACTE -
 
More

Additional design variables - can be either 
constraints or determined by the tool

Area
Pipelining

Voltage Scaling Support
Tool optimizes power and delay for nominal 
(Maximum) supply
Power and Delay numbers  reported 

for 32 different  voltage levels separated by 15 mV 
from the nominal values



INTACTE Tool description (1)
The tool models the interconnect as consisting of 
a set of identical, equal length pipeline stages
Each stage starts with a Flop driving a repeater 
through a set of buffers followed by equally 
spaced wire-repeater sections.
All parameters for the model are taken from 
detailed HSPICE simulations and ITRS

FlopsRepeatersBuffers

Interconnect Length

numBits
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INTACTE Tool description(2)
The parameters related to the flops, repeaters, 
wires and buffers are pre-computed for 4 
different technology nodes (90, 65, 45 and 32nm) 
and 32 different supply voltages.
For each iteration of optimization, the tool 
computes the power  and delay for each wire-
repeater section.
These values are multiplied by #repeaters and 
degree of pipelining and added to the pipelining 
overhead to get the overall power and delay 
numbers. 
This reduces the size of the search space
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Block Diagram of INTACTE
Tool Inputs

Technology
90,65, 45 & 32nm

Clock frequency
Length of 
interconnect
Bit width
Supply
Delay (in cycles)
Activity Factor
Coupling Factor

Tool Outputs
Power, Delay versus

Area, Pipelining, 
Supply 
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Experimental Results

Demonstrate the accuracy of 
the tool

various trends in interconnect 
power and performance have 
been exhibited
detailed HSPICE simulations 
have been carried out to validate 
the results.
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Architectural Tradeoff 
Evaluation

Architectural tradeoffs in having two 
heterogeneous wires can be evaluated 
using our tool
Architect provides length, no. of bits, 
target technology, operating voltage, 
and delay estimates
Tool provides a set of possible 
interconnect design options to choose 
from
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Interconnect Energy Savings



Energy-Aware Memory
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Memory
Hierarchical memory design better

L0 – L1 – L2 – DRAM Bank
Sizes of lower level memories are smaller
Energy consumption per access

L0: 150 mW, L1: 300 mW, L2: 700 mW, 
DRAM Bank: 12.71 W for a burst transaction 
Smaller memories need less power per access

Memory could consume 50% more power 
than processors
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Memory models and control
Each RDRAM (Rambus DRAM) chip can be 
activated separately
Supports standby, nap, and powerdown
modes
The Controller controls switching between 
modes based on performance and 
permitted slowdown
Hard disks can also be modelled and 
controlled similarly

Variable speed drives are available too
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Drowsy cache memory (1)
Cache memory lines may have

Clock gating
Supply voltage gating and scaling

Cache line gating may be at circuit level or at 
program level
Switch off cache lines when not in use for a 
certain number of cycles

this could be a fixed scheme or an adaptive scheme
useful for both I and D caches
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Drowsy cache memory (2)
Compiler analysis is possible

identify critical data in a program and 
place these in a hot cache (non-drowsy)
place non-critical data in a drowsy cache
Needs simple modifications to the 
architecture to accommodate extra 
information
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Vertical Cache Partitioning: 
A Filter Cache

A very small cache placed in front of L1 
data cache
Most data will be accessed from filter 
cache
L1 D-cache will be placed in standby mode
Good for applications with small working 
sets (e.g., streaming media applications)
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Vertical Cache Partitioning: 
Pre-decoded Buffers and 
Loop Buffers

Pre-decoded buffers
Store recently used instructions in an 
instruction buffer in decoded form
Eliminates dynamic energy spent in 
fetching and decoding

Loop buffers
Hold time-critical loop bodies in small 
dedicated buffers
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Horizontal Cache Partitioning: 
Region-based Cache

Two small additional 2 KB L1 D-caches
one for stack and one for global data
dedicated decoding circuitry detects 
data access to the appropriate cache

Substantial gain in dynamic energy 
consumption for streaming media 
application with negligible impact on 
performance
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Scratchpad memory
As fast as cache memory
No tag array, no comparisons

Consumes far lesser amount of energy than 
cache

Software-controlled and needs efficient 
allocation algorithms
Caters to both program and data objects
Energy benefits: 12% - 43%
Performance benefits: 7% - 23%
WCET can be performed accurately
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A Simple SPM allocation 
algorithm –

 
(1)

Single SPM, single memory
Memory segments

each global variable is a segment (locals 
are not considered for SPM allocation)
each function (completely)

Formulated as a knapsack problem 
and solved using integer programming



Y.N. Srikant 138

A Simple SPM allocation 
algorithm –

 
(2)

Maximize G = Σ
 

(xi
 

* Egi
 

)
subject to Σ

 
(xi

 

* si
 

) ≤
 

K, where,
Egi

 

= energy gain resulting from 
allocation of segment i to SPM

si
 

= size of memory segment i 
K = total size of SPM
xi

 

= 1, if segment i
 

is mapped to SPM
= 0, otherwise
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A Simple SPM allocation 
algorithm –

 
(3)

Egi
 

= (Em
 

– Es
 

) * ni

Em
 

(Es
 

) = energy for one access 
to main memory (SPM)

ni
 

= #memory accesses to 
segment i

 
(obtained by static 

analysis or profiling)
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Extensions to the simple 
SPM allocation algorithm

Extensions to include a hierarchy 
of SPMs, basic blocks, stack 
frames, etc., are not hard
Dynamic overlaying of memory 
segments in SPM, based on life 
times of segments is a non-trivial 
extension
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Summary
Energy optimizations are essential in 
tomorrow’s electronic systems
Energy optimization of a computer system 
should be carried out at all possible levels

Algorithm level, Micro-architecture level, 
Compiler level, Operating system level, and 
Network level.

Energy optimizations should be considered 
at the design stage itself, and not as an 
after-thought
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Research Issues
DVS for memory banks and caches
DVS for speculative execution architectures
DVS for multi-core architectures
Cache reconfigurations

change associativity and size based on program analysis
Cache bank remapping for tiled architectures
Energy models for hardware transaction memory
Memory bank control
Energy-efficient OS kernel design
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