
Just-In-Time Compilation and
Optimizations for .NET CLR

Y.N. Srikant
Department Of Computer Science & Automation

Indian Institute of Science
Bangalore 560 012

NPTEL Course on Compiler Design

Introduction

Software application development and maintenance
are time and resource intensive

Lack of standardization among platforms
Porting is cumbersome, requires substantial rewriting of
programs

Need for a development environment enabling faster
and easier development
Two paradigms

Component software
Virtual machine based execution

Software Component

Unit of independent, deployable code
Can be composed with other components to
create an application
Enables modular design and maximizes code
reuse
Libraries are one model, but not easily
portable
Aggravates security concerns due to reliance
on third party and downloaded components

Virtual Machine Based Execution

A VM is a layer over the host hardware
Simulated in software
Provides developers with useful run-time
services independent of host hardware

Absolves developers from dealing with platform-
specific issues while porting applications
This model enables increased developer efficiency,
shorter development cycles, and higher levels of
scalabilitity and extensibility

Virtual Machines -- Facilities

Checks security violations by components
Components can be dynamically loaded and
linked
Provides automatic memory management and
garbage collection
Provides architecture-independent interface
for exception handling

Virtual Machines -- Facilities

Supports a machine-independent instruction
set (called intermediate code)
Intermediate code is normally interpreted
Interpretation is simple, has small memory
foot-print, and is ideal for low-cost systems

Virtual Machines -- Disadvantages

Run-time overheads due to extra layer of
software
Dynamic loading, garbage collection, security
checks, are all expensive
Instruction interpretation overheads are the
highest
Unacceptably slow in high-performance
environments
Just-In-Time Compilation is a good solution

Just-In-Time Compilation

Intermediate code is converted to native code
on the fly
Units are compiled just before their first use
Compiled code is cached and reused for later
uses
A method is a unit of compilation
Code generation time adds to execution
overheads

JIT Compilation

Expensive optimizations used by static
compilers cannot be used by JIT compilers for
all methods

Optimization time also adds to execution overhead

Methods to be optimized must be chosen
carefully

Hot methods (most frequently executed ones)
Multi-level optimization framework based on
profiling is proposed

Multi-Level Optimization Framework

Lowest level – simplest optimizations
Highest level – most expensive optimizations
Hotness of a method determines the level
Very hot methods being very few, overheads
of expensive optimizations are not felt and
execution speed improves for future
invocations
Hot methods are found by on-line profiling

Multi-Level Optimization Framework

The VM controls profiling and optimizations
Profiles drive the optimizations

No more the developer’s burden
Profiling adds its own overheads

May negate benefits of optimization
Accuracy of profiling can be reduced resulting in
reduced overheads

This may also reduce the effectiveness of
optimizations
Tradeoff (accuracy v/s overheads)

Our Research goals

Implementation of an extensible multi-level adaptive
recompilation framework for the .NET
Implement and evaluate various profiling techniques
(hardware & software) and profile-guided
optimizations
Suggest improvements to profiling techniques to
reduce overheads
All experimentation in ROTOR framework which
implements common language infrastructure

Common Language Infrastructure (CLI)

Standardized specification of a virtual
execution environment
Defines an environment where components
created in several HLLs can interact in a
secure and well-defined manner, irrespective
of the platform on which the environment
runs
CLI-consistent compilers generate a common
intermediate language (CIL)

Common Language Infrastructure (CLI)

CIL is a platform independent stack-based instruction
set

incorporates features from both object-oriented and
procedural programming domains

At the heart of any implementation of CLI is the
common language runtime (CLR)

CLR is responsible for loading components and managing
their execution
CLR provides exeception handling, garbage collection,
thread management, remoting and type safety services

Base ROTOR Architecture

Base Class Libraries

Class Loader

Garbage Collector JIT Compiler

Execution Engine

Platform Adaptation Layer

ROTOR CLR

Source
Code

Compiler
Front end

CIL
+
Meta data

ROTOR JIT Framework

Exec Mgr

JIT
Cmplr 1

JIT
Mgr 1

Code
Mgr 1

JIT
Mgr 2

JIT
Cmplr 2

Code
Mgr 2

Baseline JIT Our JIT

ROTOR and Baseline JIT Compiler

ROTOR has a baseline JIT compiler
Performs JIT compilation and IL code type
verification
Each incorporates a JIT manager, a code
manager and a JIT code generator
Several such JIT compilers can be included in
ROTOR
Execution manager controls JIT compilers

ROTOR and Baseline JIT Compiler

Code manager takes care of memory
management of JIT compiler
No interpretation of CLI; all methods are
compiled
Speed of compilation more important than
code quality
One pass stack-based code generation
No optimizations
Stop-the-world garbage collector

Multi-level adaptive optimization
framework for Rotor

We extend the CLR with an optimizing JIT compiler
Two levels of profile-guided recompilation
First level based on a sampling profiler
Second level based on edge and call-graph profiling
Profiler interface available

Extended ROTOR Architecture
with Profiler and Optimizer

Profilers
Recompilation

Controller

Optimizing JIT
Compiler

Subsystem

Profile
Database

Baseline JIT
Compiler

Native Code

Extended CLR

First level recompilation

Method Selection: Runtime stack based
method sampling profiler

Finds hot methods, creates approx. call-graph by
periodically sampling the runtime-stack
Low overhead (2-3%, with full stack sampling)
Can be run throughout the execution of the
program, platform independent
Non-intrusive, no code change needed
A Profiler interface and queriable database are
provided; can be used by other applications

First level recompilation

Recompilation controller controls profiling
Sampling profiler is a separate thread

Wakes up periodically and monitors runtime stack
of all threads
For each thread, collects information on the
currently executed method and its caller
PDB maintains a set of method counters which are
incremented on every sample
Method counters with high value are hot and are
ideal candidates for recompilation

First level recompilation

PDB can also generate “hot method” events, apart
from the profiler itself (when counters cross a
threshold)
Hot methods are put in a queue
CLI is converted to a high level intermediate form
(HIR) with different operand types
Symbolic registers are assigned to locals and
arguments
Factored CFG, to take care of exception handling;
created in one pass

Exception generating instructions do not terminate BB

First level recompilation –
Analysis and Optimizations

Linear scan register allocation
Uses live intervals which are approximations of live ranges
Single pass over the HIR

Static inlining for small methods (not for virtual
method calls)
Static null check elimination (TOS == 0)
Load/Store Copy elimination

Useful for CISC architectures
Does not generate “Load argument”, but makes a copy on
the stack

Peephope optimizations, instruction folding

Optimized Code Generator for
the x86

Macro based – one for each operator-data type pair
Makes full use of all available addressing modes
Follows calling convention of the baseline JIT

Parameters on stack
Re-arranged according to expected order

Patches code back into runtime
Code management issues
Recompilation cache to ensure correct stack walk
Generates GC and exception handling tables

HIR is stored for 10 “latest” recompiled methods
Already optimized to a certain extent
Will be needed for more profile-guided optimizations

Second Level Recompilation -
Instrumentation System

Flexible architecture for various types of profiling
“Hot” methods are profiled further

Requires instrumentation during code generation
Presently supports

Call graph profiling
Profiles methods called from “hot” methods
Constructs accurate dynamic call graphs

Edge profiling
Basic block profiling

Passes profile information to recompilation controller
Recompilation of stored, optimized HIR

Implemented optimizations

Adaptive method inlining
Based on dynamic call-graphs derived from call-graph
profiling
“Hot” edges of call graphs (“hot” calls) can be inlined
Reduces call overhead, increases optimization opportunities
Code size and register pressure increase; recompilation time
overhead.

Profile-guided loop unrolling
Based on loop execution counts; simple loops only

Basic-block reordering
Based on edge profiles
Improves instruction cache and branch predictor
performance

Results

Efficient code generation provides 60%-70%
improvement over Baseline JIT of ROTOR
First level recompilation is not expensive
Method inlining and Load/Store Copy elimination
yield very good results
Advanced profiling has time overheads and needs
architectural support or better profiling methods
Hence, advanced profile-guided optimizations do not
show great improvements

Results

0

2

4

6

8

10

12

14

16

18

20

22

24

26

staticlocks

mstring

histogram

xmltransform

xmlschema

xmlperf

codetohtml

Baseline

O1

O2

Exec time
in sec.

	Just-In-Time Compilation and �Optimizations for .NET CLR
	Introduction
	Software Component
	Virtual Machine Based Execution
	Virtual Machines -- Facilities
	Virtual Machines -- Facilities
	Virtual Machines -- Disadvantages
	Just-In-Time Compilation
	JIT Compilation
	Multi-Level Optimization Framework
	Multi-Level Optimization Framework
	Our Research goals
	Common Language Infrastructure (CLI)
	Common Language Infrastructure (CLI)
	Base ROTOR Architecture
	ROTOR JIT Framework
	ROTOR and Baseline JIT Compiler
	ROTOR and Baseline JIT Compiler
	Multi-level adaptive optimization framework for Rotor
	Extended ROTOR Architecture�with Profiler and Optimizer
	First level recompilation
	First level recompilation
	First level recompilation
	First level recompilation –�Analysis and Optimizations
	Optimized Code Generator for �the x86
	Second Level Recompilation - �Instrumentation System
	Implemented optimizations
	Results
	Results

