
Static Analysis for
Identifying and Allocating

Clusters of Immortal Objects

Y.N. Srikant
Computer Science and Automation

Indian Institute of Science
Bangalore

NPTEL Course on Compiler Design

Introduction

Garbage collection (GC) is a necessity in
modern O-O languages

Hides the problems of memory management from
the programmer

However, program incurs performance
penalty due to GC

Generational GC and concurrent GC reduce
overheads of garbage collection

Cluster allocation reduces no. of collections
and makes each collection more effective

Cost of a Tracing Collector

Overall
Elapsed Time

GC time Program
Time

Pause
Time

Tracing
Time

Cache
Misses
Time Mutator

Time
Allocation

Time

Barrier
Time

Past approaches to reduce cost of GC

Generational collection
collect smaller areas at a time

Concurrent GC
Opportunistic collection

Key objects
schedule collection when program activity is low

Compiler assistance for garbage collection
Region collection
Escape analysis and stack allocation

Impact of Long Living Objects on
Garbage Collection

Scavenging
long-life objects
accounts for a
significant part
of GC time

Ways to Reduce Scavenge Time in
Garbage Collection

Compute life times of objects and bind them
to the activation record of a method that uses
them last

Handles volatile objects well, but not long living
objects
Stack allocation instead of heap allocation
Cannot handle related objects that refer to each
other from different methods, but die together
(dynamic data structures)

Detect long-living clusters and allocate
separately

Cluster Allocation Highlights

Identify clusters of long living objects
Allocate them in a separate mature object space, neither on
the runtime stack nor on the normal heap
No GC on mature object space, recover whole space at
method termination time
Avoids tracing and copying of long living objects during GC

Reduces heap size
Heap will now contain objects with shorter life times

Makes collections more effective and faster

Compiler analysis to identify clusters
No runtime overheads, but conservative

The Approach

Uses information about life time of objects to
construct a Points-To-Escape graph (PTE graph)

Based on the Compositional pointer and escape analysis
framework of Whaley and Rinard

Longest living methods that contribute to long living
clusters are identified using profiling
Objects that do not escape the longest living
methods are the roots of clusters

All objects reachable from the roots of clusters belong to the
clusters
Roots of clusters are Key Objects (as proposed by Hayes)

The Approach (contd.)

All cluster objects are statically allocated in a
separate mature object space
When the method binding the life time of the
root objects returns, the entire cluster is
garbage and can be reclaimed in its entirety
Evaluation using a baseline GC that can run in
stop-the-world and concurrent modes

Implemented in Rotor
Both cluster and stack allocation methods have
been implemented, compared and evaluated

Compositional Pointer and
Escape Analysis

Determines for every allocation site A, the
method M, whose stack frame will outlive the
object created at A
An object P escapes a method M if

it is a formal parameter or
a reference to P is written into a static variable
a reference to P is passed to one of the callees of
M, say N, and we do not know what N did to P
M returns P

If none of the above, then M captures P, and
P does not live beyond M; P can be allocated
on the Stack of M

Escape Analysis (Contd.)

Intra-procedural and inter-procedural
algorithms
Creates PTE (Points-To-Escape) graph

Allocated objects are nodes and references
between objects are edges
Inside nodes (edges): Objects (references)
created within the currently analyzed region
Outside nodes (edges): Objects (references)
created outside the currently analyzed region.
Nodes could become Outside nodes because of
their access via an Outside edge

Escape Analysis (Contd.)

Intra-procedural Algorithm for a method M
Incrementally computes PTE graph for M
statement by statement
PTE graphs of some of the called methods may
not be available at this stage

Interprocedural Algorithm
Composes individual method (M) PTE graphs with
those of the methods called from within M to form
complete PTE graphs for M

An Example: _211_anagram

args elem

agm

Inside node

Outside node

Return node

Inside edge

Outside edge

this dict
tsb

sb

m

buffer

sif

sii

cbuffer

cstr

this

sb
tsb

dict

origstr

m

elem
elem

s

this

sb

origstr

< run >
< read_file >

< permute >

< pinit >

args elem

agm

Inside node

Outside node

Return node

Inside edge

Outside edge

this
dict

tsb

sb

m

buffer

sif

sii

cbuffer

cstr

this

sb
tsb

dict

origstr

m

elem

elem

s

this

sb

origstr

< run > < read_file > < permute >

< pinit >

An Example: _211_anagram

Cluster objects

Cluster Identification

Apply profiling and get a list of methods that have a
long life and are close to main
Emphasis is on those methods that live long and
allocate objects that are potential roots of clusters
Nodes with no incoming edges are roots
Depth First Search on PTE graphs is used to identify
clusters

Only edges corresponding to new statements are considered
All objects created by such statements are allocated using
new1, instead of new, placing them in a separate mature
object space

Concurrent Garbage Collector
(baseline) for ROTOR

Existing ROTOR GC is a Stop-The-World GC
Ours is a generational concurrent GC

Permits mutator (application) and GC to run
concurrently; GC is yet another thread
Based on the algorithm of Nettles & O’Toole
Two generations – Young and Old

Young stores ‘recent’ objects, most of which
would become garbage quickly
Old stores ‘permanent’ objects

Has the same GC interface as ROTOR GC

Concurrent Generational
Garbage Collector

Young
Generation

Threshold
From To

Old
Generation

Threshold

Major collectionMinor
Collection

After major collection, From and To swap their roles

Performance of Concurrent GC: Pause
and Collection Times

Performance of Concurrent GC:
Elapsed Time

Performance of Clustering:
Heap and Mature Object Spaces

Program Young gen/
Old gen-no
clust. (MB)

Young gen/
Old gen-with
clust. (MB)

Max clust.
size (MB)

_211_anagram 2/8 0.7/1.4 3.8
_209_db 1/10 1/2 2.5
_208_cst 1/40 0.7/1.4 12.7
raytrace 0.8/1.6 0.8/1.6 3.6
treeadd 4/8 0.19/0.38 1.4

Average reduction
in heap requirement
is 12.6%

Performance of Clustering:
Fraction of Bytes Allocated in

Mature Object Space

pow, tsp, and dirg
will benefit from
Stack Allocation

Average: 51.57%

Performance of Clustering:
Inter-region References

Program Total No. of
cluster to

heap
references

Total inter-region
pointers

without/with
clustering

% Reduction
in no. of

inter-region
pointers

%
Garbage
in cluster

_209_db 1 6916/14 99.79 11.2

_210_si 2 44731/39324 12.08 19.38

_208_cst 6 403912/169319 58.08 33.3

raytrace 3 163798/293 99.82 99.5

Performance of Clustering:
Reduction in Allocation time

Technique Average
reduction

Stack
allocation

12.61 %

Clustering 14.99 %

Both 20.63 %

Performance of Clustering:
Impact on the No. of Collections

Technique Average
reduction

Stack
allocation

75 %

Clustering 66.5 %
Both 91.56 %

Performance of Clustering:
Reduction in collection time

Technique Average
reduction

Stack
allocation

60.9 %

Clustering 60.6 %

Both 79.27 %

Performance of Clustering:
Reduction in Pause Time

Technique Average
reduction

Stack
allocation

63.55 %

Clustering 62.82 %
Both 79.33 %

Performance of Clustering:
Impact on Elapsed Time

Technique Average
reduction

Stack allocation 1.75 %
Clustering 0.44 %

Both 1.018 %

Performance of Clustering:
Impact on static compilation time

Average increase in the
Static compilation
time: 6.73%

Limitations of the Clustering Algorithm

Analysis static and hence conservative
Cannot handle dynamically growing data
structures
Cannot handle allocation site homogeneity

Void X (..) {
if(condn)
a.f = Y();
else
b.f = Y();

}

Void Y() {
return new classA();
}

Conclusions

Clustering optimization
reduces the number of collections considerably
reduces individual collection times and pause
times by a reasonable amount
reduces number of inter-region pointers
elapsed time is not affected much
reduces the total memory requirement
produces even better results, when applied along
with stack allocation optimization

Thank You

	��
	Introduction
	 Cost of a Tracing Collector
	Past approaches to reduce cost of GC �
	Impact of Long Living Objects on Garbage Collection
	Ways to Reduce Scavenge Time in Garbage Collection
	Cluster Allocation Highlights
	The Approach
	The Approach (contd.)
	Compositional Pointer and �Escape Analysis
	Escape Analysis (Contd.)
	Escape Analysis (Contd.)
	An Example: _211_anagram
	Slide Number 14
	Cluster Identification
	Concurrent Garbage Collector (baseline) for ROTOR
	Concurrent Generational �Garbage Collector
	Performance of Concurrent GC: Pause and Collection Times
	Performance of Concurrent GC:�Elapsed Time
	Performance of Clustering:�Heap and Mature Object Spaces
	Performance of Clustering:�Fraction of Bytes Allocated in �Mature Object Space
	Performance of Clustering:�Inter-region References
	Performance of Clustering:�Reduction in Allocation time
	Performance of Clustering:�Impact on the No. of Collections
	Performance of Clustering:�Reduction in collection time
	Performance of Clustering:�Reduction in Pause Time
	Performance of Clustering:�Impact on Elapsed Time
	Performance of Clustering:�Impact on static compilation time
	Limitations of the Clustering Algorithm
	Conclusions
	Thank You

