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Introduction

Garbage collection (GC) is a necessity in 
modern O-O languages

Hides the problems of memory management from 
the programmer

However, program incurs performance 
penalty due to GC

Generational GC and concurrent GC reduce 
overheads of garbage collection

Cluster allocation reduces no. of collections 
and makes each collection more effective
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Past approaches to reduce cost of  GC 

Generational collection
collect smaller areas at a time

Concurrent GC 
Opportunistic collection

Key objects
schedule collection when program activity is low

Compiler assistance for garbage collection
Region collection
Escape analysis and stack allocation



Impact of Long Living Objects on 
Garbage Collection

Scavenging 
long-life objects
accounts for a
significant part
of GC time



Ways to Reduce Scavenge Time in 
Garbage Collection

Compute life times of objects and bind them 
to the activation record of a method that uses 
them last

Handles volatile objects well, but not long living 
objects
Stack allocation instead of heap allocation
Cannot handle related objects that refer to each 
other from different methods, but die together 
(dynamic data structures)

Detect long-living clusters and allocate 
separately



Cluster Allocation Highlights

Identify clusters of long living objects
Allocate them in a separate mature object space, neither on 
the runtime stack nor on the normal heap
No GC on mature object space, recover whole space at 
method termination time
Avoids tracing and copying of long living objects during GC

Reduces heap size
Heap will now contain objects with shorter life times

Makes collections more effective and faster

Compiler analysis to identify clusters
No runtime overheads, but conservative



The Approach

Uses information about life time of objects to 
construct a Points-To-Escape graph (PTE graph)

Based on the Compositional pointer and escape analysis
framework of Whaley and Rinard

Longest living methods that contribute to long living 
clusters are identified using profiling
Objects that do not escape the longest living 
methods are the roots of clusters

All objects reachable from the roots of clusters belong to the 
clusters
Roots of clusters are Key Objects (as proposed by Hayes)



The Approach (contd.)

All cluster objects are statically allocated in a 
separate mature object space
When the method binding the life time of the 
root objects returns, the entire cluster is 
garbage and can be reclaimed in its entirety
Evaluation using a baseline GC that can run in 
stop-the-world and concurrent modes

Implemented in Rotor
Both cluster and stack allocation methods have 
been implemented, compared and evaluated



Compositional Pointer and 
Escape Analysis

Determines for every allocation site A, the 
method M, whose stack frame will outlive the 
object created at A
An object P escapes a method M if

it is a formal parameter or
a reference to P is written into a static variable
a reference to P is passed to one of the callees of 
M, say N, and we do not know what N did to P
M returns P

If none of the above, then M captures P, and 
P does not live beyond M; P can be allocated 
on the Stack of M



Escape Analysis (Contd.)

Intra-procedural and inter-procedural 
algorithms 
Creates PTE (Points-To-Escape) graph

Allocated objects are nodes and references 
between objects are edges
Inside nodes (edges): Objects (references) 
created within the currently analyzed region
Outside nodes (edges): Objects (references) 
created outside the currently analyzed region. 
Nodes could become Outside nodes because of 
their access via an Outside edge



Escape Analysis (Contd.)

Intra-procedural Algorithm for a method M
Incrementally computes PTE graph for M 
statement by statement
PTE graphs of some of the called methods may 
not be available at this stage

Interprocedural Algorithm
Composes individual method (M) PTE graphs with 
those of the methods called from within M to form 
complete PTE graphs for M
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Cluster Identification

Apply profiling and get a list of methods that have a 
long life and are close to main
Emphasis is on those methods that live long and
allocate objects that are potential roots of clusters
Nodes with no incoming edges are roots
Depth First Search on PTE graphs is used to identify 
clusters

Only edges corresponding to new statements are considered
All objects created by such statements are allocated using 
new1, instead of new, placing them in a separate mature 
object space



Concurrent Garbage Collector 
(baseline)  for ROTOR 

Existing ROTOR GC is a Stop-The-World GC
Ours is a generational concurrent GC

Permits mutator (application) and GC to run 
concurrently; GC is yet another thread
Based on the algorithm of Nettles & O’Toole
Two generations – Young and Old

Young stores ‘recent’ objects, most of which 
would become garbage quickly
Old stores ‘permanent’ objects

Has the same GC interface as ROTOR GC



Concurrent Generational 
Garbage Collector
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Performance of Concurrent GC: Pause 
and Collection Times



Performance of Concurrent GC: 
Elapsed Time



Performance of Clustering: 
Heap and Mature Object Spaces

Program Young gen/ 
Old gen-no 
clust. (MB)

Young gen/ 
Old gen-with 
clust. (MB)

Max clust. 
size (MB)

_211_anagram 2/8 0.7/1.4 3.8
_209_db 1/10 1/2 2.5
_208_cst 1/40 0.7/1.4 12.7
raytrace 0.8/1.6 0.8/1.6 3.6
treeadd 4/8 0.19/0.38 1.4

Average reduction
in heap requirement
is 12.6%



Performance of Clustering: 
Fraction of Bytes Allocated in 

Mature Object Space

pow, tsp, and dirg
will benefit from
Stack Allocation

Average: 51.57%



Performance of Clustering: 
Inter-region References

Program Total No. of 
cluster to 

heap 
references

Total inter-region 
pointers 

without/with 
clustering

% Reduction 
in no. of 

inter-region 
pointers

% 
Garbage 
in cluster

_209_db 1 6916/14 99.79 11.2

_210_si 2 44731/39324 12.08 19.38

_208_cst 6 403912/169319 58.08 33.3

raytrace 3 163798/293 99.82 99.5



Performance of Clustering: 
Reduction in Allocation time

Technique Average 
reduction

Stack 
allocation

12.61 %

Clustering 14.99 %

Both 20.63 %



Performance of Clustering: 
Impact on the No. of Collections

Technique Average 
reduction

Stack 
allocation

75 %

Clustering 66.5 %
Both 91.56 %



Performance of Clustering: 
Reduction in collection time

Technique Average 
reduction

Stack 
allocation

60.9 %

Clustering 60.6 %

Both 79.27 %



Performance of Clustering: 
Reduction in Pause Time

Technique Average 
reduction

Stack 
allocation

63.55 %

Clustering 62.82 %
Both 79.33 %



Performance of Clustering: 
Impact on Elapsed Time

Technique Average 
reduction

Stack allocation 1.75 %
Clustering 0.44 %

Both 1.018 %



Performance of Clustering: 
Impact on static compilation time

Average increase in the
Static compilation 
time: 6.73%



Limitations of the Clustering Algorithm

Analysis static and hence conservative
Cannot handle dynamically growing data 
structures
Cannot handle allocation site homogeneity

Void X ( .. )  {
if(condn) 
a.f = Y();
else
b.f = Y();

}

Void Y() {
return new classA();
}



Conclusions

Clustering optimization 
reduces the number of collections considerably
reduces individual collection times and pause 
times by a reasonable amount
reduces number of inter-region pointers
elapsed time is not affected much
reduces the total memory requirement
produces even better results, when applied along 
with stack allocation optimization



Thank You
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