
Run-time Environments
 - Part 3

Y.N. Srikant
Computer Science and Automation
Indian Institute of Science
Bangalore 560 012

NPTEL Course on Compiler Design

Y.N. Srikant 2

Outline of the Lecture –

Part 3

What is run-time support?
Parameter passing methods
Storage allocation
Activation records
Static scope and dynamic scope
Passing functions as parameters
Heap memory management
Garbage Collection

Y.N. Srikant 3

Heap Memory Management

Heap is used for allocating space for objects created
at run time

For example: nodes of dynamic data structures such as
linked lists and trees

Dynamic memory allocation and deallocation based
on the requirements of the program

malloc() and free() in C programs
new() and delete() in C++ programs
new() and garbage collection in Java programs

Allocation and deallocation may be completely
manual (C/C++), semi-automatic (Java), or fully
automatic (Lisp)

Y.N. Srikant 4

Memory Manager

Manages heap memory by implementing
mechanisms for allocation and deallocation, both
manual and automatic
Goals

Space efficiency: minimize fragmentation
Program efficiency: take advantage of locality of objects in
memory and make the program run faster
Low overhead: allocation and deallocation must be efficient

Heap is maintained either as a doubly linked list or
as bins of free memory chunks (more on this later)

Y.N. Srikant 5

Allocation and Deallocation

In the beginning, the heap is one large and
contiguous block of memory
As allocation requests are satisfied, chunks are cut
off from this block and given to the program
As deallocations are made, chunks are returned to
the heap and are free to be allocated again (holes)
After a number of allocations and deallocations,
memory is fragmented and not contiguous
Allocation from a fragmented heap may be made
either in a first-fit or best-fit manner
After a deallocation, we try to coalesce contiguous
holes and make a bigger hole (free chunk)

Y.N. Srikant 6

Heap Fragmentation

busy free busy free busy busy

100K 50K 20K 50K 200K 30K

free

50K

To begin with the whole heap is a single
chunk of size 500K bytes
After a few allocations and deallocations,
there are holes
In the above picture, it is not possible to
allocate 100K or 150K even though total free
memory is 150K

Y.N. Srikant 7

First-Fit and Best-Fit Allocation Strategies

The first-fit strategy picks the first available
chunk that satisfies the allocation request
The best-fit strategy searches and picks the
smallest (best) possible chunk that satisfies
the allocation request
Both of them chop off a block of the required
size from the chosen chunk, and return it to the
program
The rest of the chosen chunk remains in the
heap

Y.N. Srikant 8

First-Fit and Best-Fit Allocation Strategies

Best-fit strategy has been shown to reduce
fragmentation in practice, better than first-fit
strategy
Next-fit strategy tries to allocate the object in
the chunk that has last been split

Tends to improve speed of allocation
Tends to improve spatial locality since objects
allocated at about the same time tend to have
similar reference patterns and life times
(cache behaviour may be better)

Y.N. Srikant 9

Bin-based Heap

Free space organized into bins according to their
sizes (Lea Memory Manager in GCC)

Many more bins for smaller sizes, because there are many
more small objects
A bin for every multiple of 8-byte chunks from 16 bytes to
512 bytes
Then approximately logarithmically (double previous size)
Within each “small size bin”, chunks are all of the same
size
In others, they are ordered by size
The last chunk in the last bin is the wilderness chunk,
which gets us a chunk by going to the operating system

Y.N. Srikant 10

Bin-based Heap –

An Example

16 24 32 231...640576512...

2 3 exact bins ... 64 65 sorted bins 127

Ref: From Lea’s
article on memory
manager in GCC

index

size

chunks

Y.N. Srikant 11

Managing and Coalescing Free Space

Should coalesce adjacent chunks and reduce
fragmentation

Many small chunks together cannot hold one
large object
In the Lea memory manager, no coalescing in the
exact size bins, only in the sorted bins
Boundary tags (free/used bit and chunk size) at
each end of a chunk (for both used and free
chunks)
A doubly linked list of free chunks

Y.N. Srikant 12

Boundary Tags and Doubly Linked List

0 200 200 0 0 100 100 0 1 120 120 1

Chunk A Chunk B Chunk C

free freed
just
now

occupied

... ..

3 adjacent chunks. Chunk B has just been deallocated
and returned to the free list. Chunks A and B can be
merged, and this is done just before inserting it into
the linked list. The merged chunk AB may have to be
placed in a different bin.

Y.N. Srikant 13

Problems with Manual Deallocation

Memory leaks
Failing to delete data that cannot be referenced
Important in long running or nonstop programs

Dangling pointer dereferencing
Referencing deleted data

Both are serious and hard to debug

Y.N. Srikant 14

Garbage Collection

Reclamation of chunks of storage holding objects
that can no longer be accessed by a program
GC should be able to determine types of objects

Then, size and pointer fields of objects can be determined
by the GC
Languages in which types of objects can be determined at
compile time or run-time are type safe

Java is type safe
C and C++ are not type safe because they permit type
casting, which creates new pointers
Thus, any memory location can be (theoretically) accessed at
any time and hence cannot be considered inaccessible

Y.N. Srikant 15

Reachability

of Objects

The root set is all the data that can be accessed
(reached) directly by a program without having to
dereference any pointer
Recursively, any object whose reference is stored in
a field of a member of the root set is also reachable
New objects are introduced through object
allocations and add to the set of reachable objects
Parameter passing and assignments can propagate
reachability
Assignments and ends of procedures can terminate
reachability

Y.N. Srikant 16

Reachability

of Objects

Similarly, an object that becomes
unreachable can cause more objects to
become unreachable
A garbage collector periodically finds all
unreachable objects by one of the two
methods

Catch the transitions as reachable objects
become unreachable
Or, periodically locate all reachable objects and
infer that all other objects are unreachable

Y.N. Srikant 17

Reference Counting Garbage Collector

This is an approximation to the first approach
mentioned before
We maintain a count of the references to an
object, as the mutator (program) performs
actions that may change the reachability set
When the count becomes zero, the object
becomes unreachable
Reference count requires an extra field in the
object and is maintained as below

Y.N. Srikant 18

Maintaining Reference Counts

New object allocation. ref_count=1 for the new object
Parameter passing. ref_count++ for each object passed
into a procedure
Reference assignments. For u:=v, where u and v are
references, ref_count++ for the object *v, and ref_count--
for the object *u
Procedure returns. ref_count-- for each object pointed to
by the local variables
Transitive loss of reachability. Whenever ref_count of an
object becomes zero, we must also decrement the
ref_count of each object pointed to by a reference within
the object

Y.N. Srikant 19

Reference Count Manipulation

0

1

2

1

Indicated numbers
are reference counts

Node A is not in the
root set, to begin with.
It is collected.

A

B C

D

Y.N. Srikant 20

Reference Count Manipulation

0

2

0

Indicated numbers
are reference counts

Nodes B and C now are unreachable.
They are collected

B C

D

Y.N. Srikant 21

Reference Count Manipulation

0

Indicated number is
the reference count

Node D is now unreachable.
It is collected too.

D

Y.N. Srikant 22

Reference Counting GC:
Advantages and Disadvantages

High overhead due to reference maintenance
Cannot collect unreachable cyclic data structures
(ex: circularly linked lists), since the reference
counts never become zero
Garbage collection is incremental

overheads are distributed to the mutator’s operations and
are spread out throughout the life time of the mutator

Garbage is collected immediately and hence space
usage is low
Useful for real-time and interactive applications,
where long and sudden pauses are unacceptable

Y.N. Srikant 23

Unreachable Cyclic Data Structure

1

1

2

2

Indicated numbers
are reference counts
None of them are zero
None of the nodes can
be collected

None of the nodes
are in the root set

	Run-time Environments�- Part 3
	Outline of the Lecture – Part 3
	Heap Memory Management
	Memory Manager
	Allocation and Deallocation
	Heap Fragmentation
	First-Fit and Best-Fit Allocation Strategies
	First-Fit and Best-Fit Allocation Strategies
	Bin-based Heap
	Bin-based Heap – An Example
	Managing and Coalescing Free Space
	Boundary Tags and Doubly Linked List
	Problems with Manual Deallocation
	Garbage Collection
	Reachability of Objects
	Reachability of Objects
	Reference Counting Garbage Collector
	Maintaining Reference Counts
	Reference Count Manipulation
	Reference Count Manipulation
	Reference Count Manipulation
	Reference Counting GC: �Advantages and Disadvantages
	Unreachable Cyclic Data Structure

