
Local Optimizations - Part 1

Y.N. Srikant

Department of Computer Science
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Compiler Design

Y.N. Srikant Local Optimizations



Outline of the Lecture

Basic blocks and control flow graphs
Local optimizations
Building a control flow graph
Directed acyclic graphs and value numbering

DAGs and value-numbering will be covered in part 2 of the
lecture.

Y.N. Srikant Local Optimizations



Basic Blocks and Flow Graphs

Basic blocks are sequences of intermediate code with a
single entry and a single exit
We consider the quadruple version of intermediate code
here, to make the explanations easier
Flow graphs show control flow among basic blocks
Basic blocks are represented as directed acyclic
blocks(DAGs), which are in turn represented using the
value-numbering method applied on quadruples
Optimizations on basic blocks

Y.N. Srikant Local Optimizations



Example of a Control Flow Graph

Y.N. Srikant Local Optimizations



Local Optimizations

Local common subexpression elimination
Dead code (instructions that compute a value that is never
used) elimination
Reordering statements that do not depend on one another
Reordering computations using algebraic laws
The above two optimizations can be applied only on DAG
or tree representation

Y.N. Srikant Local Optimizations



Algorithm for Partitioning into Basic Blocks

1 Determine the set of leaders, the first statements of basic
blocks

The first statement is a leader
Any statement which is the target of a conditional or
unconditional goto is a leader
Any statement which immediately follows a conditional goto
is a leader

2 A leader and all statements which follow it upto but not
including the next leader (or the end of the procedure), is
the basic block corresponding to that leader

3 Any statements, not placed in a block, can never be
executed, and may now be removed, if desired

Y.N. Srikant Local Optimizations



Example of a Control Flow Graph

Y.N. Srikant Local Optimizations



Control Flow Graph

The nodes of the CFG are basic blocks
One node is distinguished as the initial node
There is a directed edge B1 −→ B2, if B2 can immediately
follow B1 in some execution sequence; i.e.,

There is a conditional or unconditional jump from the last
statement of B1 to the first statement of B2, or
B2 immediately follows B1 in the order of the program, and
B1 does not end in an unconditional jump

Y.N. Srikant Local Optimizations



Basic Block Representation

A basic block is represented as a record consisting of
1 a count of the number of quadruples in the block
2 a pointer to the leader of the block
3 pointers to the predecessors of the block
4 pointers to the successors of the block

Note that jump statements point to basic blocks and not
quadruples so as to make code movement easy

Y.N. Srikant Local Optimizations



Example of a Control Flow Graph

Y.N. Srikant Local Optimizations


