
Interprocedural
 Data-Flow Analysis

Y.N. Srikant
Department of Computer Science and Automation
Indian Institute of Science
Bangalore 560012

NPTEL Course on Compiler Design

Y.N. Srikant Interprocedural Data-Flow Analysis 2

Motivation for Interprocedural

DFA

All DFA and optimizations that we have
studied so far are intraprocedural

are performed on one procedure at a time
assume that procedures invoked may alter all the
“visible” variables
imprecise, conservative, but simple

Interprocedural analysis operates across an
entire program

makes information flow from caller to callee and
vice-versa

Y.N. Srikant Interprocedural Data-Flow Analysis 3

Motivation for Interprocedural

DFA

Procedure inlining is a simple method to
enable such information flow

applicable only if target of a call is known
not possible if call is via a pointer or is “virtual”

Interprocedural analysis in O-O languages
can sometimes determine if the target of
even a “virtual call” is “static”

now, either a “static” call or inlining can be used
However, inlining should be applied with care

increases memory foot print

Y.N. Srikant Interprocedural Data-Flow Analysis 4

Applications of Interprocedural

Analysis

Convering virtual method calls to static method calls
Interprocedural pointer analysis helps in making “points-to” sets
more precise

reaching definitions, available expressions etc., can now be
computed with more precision

Interprocedural analysis eliminates spurious data dependencies,
interprocedural constant propagation makes loop bounds known

exposes more parallelism during parallelization
Interprocedural analysis helps in detecting

lock-unlock pattern of critical regions
disable-enable of interrupts
SQL injection (lack of input validation in Web applications)
vulnerabilities due to buffer overflows (frequently, array bounds
are not checked)

Y.N. Srikant Interprocedural Data-Flow Analysis 5

Call Graphs

A call graph for a program is a set of nodes
and edges such that

There is one node for each procedure
There is one node for each call site
If call site c may call procedure p, then there is an
edge c p

C and Fortran make procedure calls directly
by name

hence call target of each invocation can be
determined statically

Y.N. Srikant Interprocedural Data-Flow Analysis 6

Call Graphs

If the program includes a procedure
parameter or a function pointer

target is not known until runtime
target may vary from one invocation to another
call site can link to many or even all procedures in
the call graph (considering only return types of
functions)

Ex: virtual method invocations in C++/Java
calls through the base class pointer cannot be
resolved till runtime

Y.N. Srikant Interprocedural Data-Flow Analysis 7

Example of Call Graph

int

(*fp) (int);
int

f1(int x) {
if (x > 100) return (*fp)(x-1); // csite 1
else return x;

}
int

f2(int y) {
fp

= &f1; return (*fp)(y); // csite 2

}
void main() {

fp

= &f2; (*fp)(200); // csite 3
}

Y.N. Srikant Interprocedural Data-Flow Analysis 8

Call Graph Example

csite

1

csite

2

csite

3

csite

1

csite

2

csite

3

f1

f2

main

f1

f2

main

Conservative call graph Exact call graph

Y.N. Srikant Interprocedural Data-Flow Analysis 9

Analysis of Call Graph

Presence of references or pointers to
functions or methods

helps us in getting a static approximation of the
values of all procedure parameters, function
pointers, and receiver object types

With interprocedural analysis
more targets can be discovered and new edges
can be inserted into the call graph

This iterative procedure is repeated until
convergence is reached

Y.N. Srikant Interprocedural Data-Flow Analysis 10

Context Sensitivity

i = 9;
while (i >= 0) {

t1 = test(100); // call site 1
t2 = test(200); // call site 2
t3 = test(300); // call site 3
val[i--] = t1 + t2 + t3;

}
int

test (int

v) {

return (v*2);
}

Function test is invoked with
a constant in each of the
call sites, but the value of
the constant is context-
dependent
It is not possible to infer that
t1, t2, and t3 are each
assigned constant values
(hence for val[i] as well)
unless we recognize the
context
A naive analysis would infer
that test can return 200,
400, or 600 from any of the
three calls

A context-sensitive analyis returns
200, 400, and 600 for t1, t2, and t3
(resp.), and 1200 for val[i]

Y.N. Srikant Interprocedural Data-Flow Analysis 11

Context Insensitive Analysis

Treat each call and return as goto operations
Create a super control flow graph

contains all the normal intraprocedural control-flow edges
edge connecting each call site to the beginning of the
pocedure it calls
edge connecting return statement back to the call site
assignment statements to assign

each actual parameter to its corresponding formal parameter
the returned value to the receiving variable

Apply standard analysis on the super CFG
Simple, but imprecise, because a function is
analyzed as a common entity for all its calls and only
its input-output behaviour abstracted out

Y.N. Srikant Interprocedural Data-Flow Analysis 12

Super Control Graph and
 Context-Insensitive Analysis Example
i = 9

if i < 0 goto

L

v = 100 // call site 1

t1 = retval
v = 200 // call site 2

t2 = retval
v = 300 // call site 3

retval

= v*2 // func

test

t3 = retval
t4 = t1 + t2
t5 = t4 + t5
val[i] = t5
i = i -

1

B1

B2

B3

B4

B5

B6

B7

v (B6): 100,200, or 300
t1 (B4): 200, 400, or 600
t2 (B5): 200, 400, or 600
t3 (B7): 200, 400, or 600
val[i] (B7): 600, 800, 1000,
1200, 1400, 1600, or 1800

Y.N. Srikant Interprocedural Data-Flow Analysis 13

Call Strings

In the previous example, we needed just the call site
to distinguish among the contexts
In general, the entire call stack defines a calling
context
The string of call sites in the call stack is known as
the call string
We may choose to use the k entries just below any
call site in the stack to distinguish between contexts

k-limiting context analysis
reduces precision and makes results more conservative
We take each call string, follow the calls, and perform data
flow analysis, replacing the parameters and result variables
as we go up and down the call string

Y.N. Srikant Interprocedural Data-Flow Analysis 14

k-limiting Call Strings

i = 9;
while (i >= 0) {

t1 = f (100); // call site c1
t2 = f (200); // call site c2
t3 = f (300); // call site c3
val[i--] = t1 + t2 + t3;

}
int

f (int

v) {

return test (v); // call site c4
}
int

test (int

v) {

return (v*2);
}

There are 3 call strings to
test: (c1,c4), (c2,c4), (c3,c4)
The value of v in test does
not depend on the last call
site c4, but on the first
element of each of the call
strings
In this case, 2-limiting
context analysis is enough

Y.N. Srikant Interprocedural Data-Flow Analysis 15

Complete Call Strings
i = 9;
while (i >= 0) {

t1 = f (100); // call site c1
t2 = f (200); // call site c2
t3 = f (300); // call site c3
val[i--] = t1 + t2 + t3;

}
int f (int v) {

if (v > 101)
return f (v–1); // call site c4

else
return test (v); // call site c5

}
int test (int v) {

return (v*2);
}

There are 3 call strings to test
(c1,c5), value returned is 200
(c2,c4,c4,...,c4,c5): c4 is
repeated 100 times, value
returned is 202
(c3,c4,c4,...,c4,c5): c4 is
repeated 200 times, value
returned is 202
The value of v in test
depends on the full call string
In this case, k-limiting context
analysis is not enough, for
any k

Y.N. Srikant Interprocedural Data-Flow Analysis 16

Cloning-Based Context-Sensitive Analysis

i = 9;
while (i >= 0) {

t1 = f1 (100); // call site c1
t2 = f2 (200); // call site c2
t3 = f3 (300); // call site c3
val[i--] = t1 + t2 + t3;

}
int

f1 (int

v) {
return test1 (v); // call site c4.1

}
int

test1 (int

v) {
return (v*2);

}

int

f2 (int

v) {
return test2 (v); // call site c4.2

}
int

test2 (int

v) {
return (v*2);

}
int

f3 (int

v) {
return test3 (v); // call site c4.3

}
int

test3 (int

v) {
return (v*2);

}

Simple, context-insensitive analysis is enough on the cloned call graph

Recursive programs cannot be handled

Y.N. Srikant Interprocedural Data-Flow Analysis 17

Summary-Based Context-Sensitive
Analysis

Each procedure is represented by a concise
description (“summary”) that encapsulates some
observable behaviour of the procedure
In reaching definitions or available expressions
analysis, the appropriate OUT sets of the “procedure
end” blocks would serve the purpose
We now explain one method of doing such an
analysis
Recursion can also be handled using fixpoint
computation

Y.N. Srikant Interprocedural Data-Flow Analysis 18

The Problem of Aliases

b+x will change in B3 if
y is an alias of either b
or x
How can aliases arise?
Consider a procedure

procedure p(x,y)
and calls to p: p(z,z)
or a call of p(u,v)

from

another procedure q(u,v)
but q is called as q(z,z).

a = b+x

y = c

d = b+x

B1

B2

B3

Y.N. Srikant Interprocedural Data-Flow Analysis 19

Aliases

In reaching definitions, it is conservative not
to regard variables as aliases when in doubt

So, we do not kill definitions when in doubt
But, in available expressions, it is exactly the
opposite

In the above example, if b+x is to be available in
B3, we must be certain that b and x are not
aliases of y
If in doubt, we assume aliasing and kill b+x

Y.N. Srikant Interprocedural Data-Flow Analysis 20

Alias Analysis

Assume a language with recursive
procedures but no nesting of procedures
Parameters are passed by reference

1.

Rename variables in procedures (if
necessary) so that all names are different

2.

If there is a procedure p(x1

, x2

,..., xn

) and a
call p(y1

, y2

,..., yn

), then set xi

≡

yi

, for all i
3.

Take reflexive and transitive closure of ≡

Y.N. Srikant Interprocedural Data-Flow Analysis 21

Alias Analysis Example

global g,h;
procedure main() {

local i;
g = ...; one(h,i);

}
procedure one(w,x) {

x = ...;
two(w,w); two(g,x);

}

procedure two(y,z) {
local k;
h = ...; one(k,y);

}
main: h ≡ w, i ≡ x
one: w ≡ y, w ≡ z,
g ≡

y, x ≡

z

two: k ≡ w, y ≡ x
All variables are aliases
of each other

Y.N. Srikant Interprocedural Data-Flow Analysis 22

Change Computation

change[p]: a set of global variables and
formal parameters of p, that might be
changed during an execution of p. No
aliasing is considered at this time
def[p]: a set of formal parameters of p and
globals having explicit definitions within p (not
including those defined because of procedure
calls made within p)

Y.N. Srikant Interprocedural Data-Flow Analysis 23

Change Computation

change[p] = def[p] U A[p] U G[p], where
A[p] = {a | a is a global variable or formal param of
p, such that, for some proc q and integer i, p calls q
with a as the ith actual param and the ith formal
param of q is in change[q] }
G[p] = {g | g is a global in change[q] and p calls q }
We use a simplified calling graph whose nodes are
procedures. There is an edge from p to q if p calls q
somewhere in the program

Y.N. Srikant Interprocedural Data-Flow Analysis 24

Example for the set A[p]

procedure p(...)
{ call q(...,a,...)
...

}

procedure q(b1

,b2

,...,bi ,...,bn

)
{ ...
}

ith

actual parameter ith

formal parameter
and bi is in change[q]

Y.N. Srikant Interprocedural Data-Flow Analysis 25

Change Computation

Input: A calling graph with a collection of
procedures, p1, p2,..., pn. If the calling graph
is acyclic, then we assume that pi calls pj only
if j<i, otherwise, no assumptions
Output: change[p]
It is assumed that def[p] is precomputed

Y.N. Srikant Interprocedural Data-Flow Analysis 26

for each proc p do change[p]

= def[p];
while changes to any change[p]

occur do {
for i = 1 to n do {

for each proc q

called by pi

do {
1. add any globals

in change[q]

to change[pi

];// adding G[pi

]
2. for each formal parameter x

(jth) of q do
if x

is in change[q]

then
for each call of q

by pi

do
if a, the jth

actual param

of the call is a
global or formal parameter of pi

then
add a

to change[pi

] // adding A[pi

]
}

}

Change Computation

Y.N. Srikant Interprocedural Data-Flow Analysis 27

Alias Analysis Example

global g,h;
procedure main() {

local i;
g = ...; one(h,i);

}
procedure one(w,x) {

x = ...;
two(w,w); two(g,x);

}

procedure two(y,z) {
local k;
h = ...; one(k,y);

}
main: h ≡ w, i ≡ x
one: w ≡ y, w ≡ z,
g ≡

y, x ≡

z

two: k ≡ w, y ≡ x
All variables are aliases
of each other

Y.N. Srikant Interprocedural Data-Flow Analysis 28

main

two

one

def(main) = {g} = change(main), G(main) = Φ
def(two) = {h} = change(two), G(two) = Φ
def(one) = {x} = change(one), G(one) = {h}, since
“one”

calls “two”, h is a global and change(two) contains h

Consider “two”. “two”

calls “one”
one(k, y) –

actual params, k is local
one(w,x) –

formal params, x is in change(one)
Therefore, A(two) = {y}, change(two) = {h,y}

Consider “one”. “one”

calls “two”

twice
two(w, w) –

actual params
two(y, z) –

formal params, y is in change(two)
Therefore, A(one) = {w}
two(g, x) –

actual params
two(y, z) –

formal params, y is in change(two)
Therefore, A(one) = {w,g}, change(one) = {w,g,h,x}

Consider “main”. “main”

calls “one”
one(h, i) –

actual params, i is local
one(w, x) –

formal params, w is in change(one)
Therefore, A(main) = {h}, change(main) = {g,h}

Y.N. Srikant Interprocedural Data-Flow Analysis 29

Use of Change Information in computing
Available Expressions –

Method 1

Each procedure call is a separate basic block
Method 1: B is a block for call to proc p

a_gen[B] = Φ, for all proc call basic blocks
a_kill[B]: if a variable b is in change[p], then b kills
all expressions involving b and its aliases
a_gen and a_kill for all other types of blocks are
computed in the usual manner
Knowing a_gen[B] and a_kill[B] for proc call blocks,
computing IN[B] and OUT[B] for all blocks in the
whole procedure proceeds in the usual manner

Y.N. Srikant Interprocedural Data-Flow Analysis 30

Use of Change Information in computing
Available Expressions –

Method 2

Compute IN and OUT for all blocks in all procedures
as usual, after computing a_gen and a_kill for
procedure calls as in method 1
a_out at the return point from a procedure p can be
taken as a_gen[p] for a block with a call to p (with no
aliases applied)

However, consider only those expressions in a_out with all
their variables in change[p]
We substitute actual params for the formal params and see
what expressions are generated by the call

Without changing a_kill for proc call blocks,
computations of IN and OUT are repeated
This procedure is repeated until no changes occur

	Interprocedural �Data-Flow Analysis
	Motivation for Interprocedural DFA
	Motivation for Interprocedural DFA
	Applications of Interprocedural Analysis
	Call Graphs
	Call Graphs
	Example of Call Graph
	Call Graph Example
	Analysis of Call Graph
	Context Sensitivity
	Context Insensitive Analysis
	Super Control Graph and�Context-Insensitive Analysis Example
	Call Strings
	k-limiting Call Strings
	Complete Call Strings
	Cloning-Based Context-Sensitive Analysis
	Summary-Based Context-Sensitive Analysis
	The Problem of Aliases
	Aliases
	Alias Analysis
	Alias Analysis Example
	Change Computation
	Change Computation
	Example for the set A[p]
	Change Computation
	Change Computation
	Alias Analysis Example
	Slide Number 28
	Use of Change Information in computing Available Expressions – Method 1
	Use of Change Information in computing Available Expressions – Method 2

