
Code Generation –

Part 1

Y. N. Srikant
Computer Science and Automation
Indian Institute of Science
Bangalore 560 012

NPTEL Course on Compiler Design

Y.N. Srikant 2

Outline of the Lecture

1. Code generation – main issues
2. Samples of generated code
3. Two Simple code generators
4. Optimal code generation

a) Sethi-Ullman algorithm
b) Dynamic programming based algorithm
c) Tree pattern matching based algorithm

5. Code generation from DAGs
6. Peephole optimizations

Topics 4(b),4(c),5, and 6 will be covered in part 2 of
the lecture

Y.N. Srikant 3

Code Generation –

Main Issues (1)

Transformation:
Intermediate code m/c code (binary or assembly)
We assume quadruples and CFG to be available

Which instructions to generate?
For the quadruple A = A+1, we may generate

Inc A or
Load A, R1
Add #1, R1
Store R1, A

One sequence is faster than the other (cost
implication)

Y.N. Srikant 4

Code Generation –

Main Issues (2)

In which order?
Some orders may use fewer registers and/or may be faster

Which registers to use?
Optimal assignment of registers to variables is difficult to
achieve

Optimize for memory, time or power?
Is the code generator easily retargetable to other
machines?

Can the code generator be produced automatically from
specifications of the machine?

Y.N. Srikant 5

Samples of Generated Code

B = A[i]
Load i, R1 // R1 = i
Mult R1,4,R1// R1 = R1*4
// each element of array
// A is 4 bytes long
Load A(R1), R2// R2=(A+R1)
Store R2, B// B = R2
X[j] = Y
Load Y, R1// R1 = Y
Load j, R2// R2 = j
Mult R2, 4, R2// R2=R2*4
Store R1, X(R2)// X(R2)=R1

X = *p
Load p, R1
Load 0(R1), R2
Store R2, X
*q = Y
Load Y, R1
Load q, R2
Store R1, 0(R2)
if X < Y goto L
Load X, R1
Load Y, R2
Cmp R1, R2
Bltz L

Y.N. Srikant 6

Samples of Generated Code –
 Static Allocation (no JSR instruction)

// Code for function F1
action code seg 1

call F2
action code seg 2

Halt

// Code for function F2
action code seg 3

return

return address

data array
A

variable x
variable y

return address

data array
B

variable m

0
4

72

0
4

40
44

Three Adress Code
Activation Record
for F1 (48 bytes)

Activation Record
for F2 (76 bytes)

parameter 1

Y.N. Srikant 7

Samples of Generated Code –
 Static Allocation (no JSR instruction)

// Code for function F1
200: Action code seg 1
// Now store return address
240: Move #264, 648
252: Move param1, 652
256: Jump 400 // Call F2
264: Action code seg 2
280: Halt

...
// Code for function F2
400: Action code seg 3
// Now return to F1
440: Jump @648

...

//Activation record for F1
//from 600-647
600: //return address
604: //space for array A
640: //space for variable x
644: //space for variable y
//Activation record for F2
//from 648-723
648: //return address
652: // parameter 1
656: //space for array B

...
720: //space for variable m

Y.N. Srikant 8

Samples of Generated Code –
 Static Allocation (with JSR instruction)

// Code for function F1
action code seg 1

call F2
action code seg 2

Halt

// Code for function F2
action code seg 3

return

data array
A

variable x
variable y

data array
B

variable m

0

68

0

36
40

Three Adress Code
Activation Record
for F1 (44 bytes)

Activation Record
for F2 (72 bytes)

Y.N. Srikant 9

Samples of Generated Code –
 Static Allocation (with JSR instruction)

// Code for function F1
200: Action code seg 1
// Now jump to F2, return addr
// is stored on hardware stack
240: JSR 400 // Call F2
248: Action code seg 2
268: Halt

...
// Code for function F2
400: Action code seg 3
// Now return to F1 (addr 248)
440: return

...

//Activation record for F1
//from 600-643
600: //space for array A
636: //space for variable x
640: //space for variable y
//Activation record for F2
//from 644-715
644: //space for array B

...
712: //space for variable m

Y.N. Srikant 10

Samples of Generated Code –
 Dynamic Allocation (no JSR instruction)

// Code for function F1
action code seg 1

call F2
action code seg 2

return

// Code for function F2
action code seg 3

call F1
action code seg 4

call F2
action code seg 5

return

return address

local data
and other

information

return address

local data
and other

information

0
4

92

0
4

40
64

Three Adress Code
Activation Record
for F1 (68 bytes)

Activation Record
for F2 (96 bytes)

Y.N. Srikant 11

Samples of Generated Code –
 Dynamic Allocation (no JSR instruction)

//Initialization
100: Move #800, SP

...
//Code for F1
200: Action code seg 1
230: Add #96, SP
238: Move #254, @SP
246: Jump 300
254: Sub #96, SP
262: Action code seg 2
296: Jump @SP

//Code for F2
300: Action code seg 3
340: Add #68, SP
348: Move #364, @SP
356: Jump 200
364: Sub #68, SP
372: Action code seg 4
400: Add #96, SP
408: Move #424, @SP
416: Jump 300
424: Sub #96, SP
432: Action code seg 5
480: Jump @SP

Y.N. Srikant 12

Samples of Generated Code –
 Dynamic Allocation (with JSR instruction)

// Code for function F1
action code seg 1

call F2
action code seg 2

return

// Code for function F2
action code seg 3

call F1
action code seg 4

call F2
action code seg 5

return

local data
and other

information

local data
and other

information

0

88

0

36
60

Three Adress Code
Activation Record
for F1 (64 bytes)

Activation Record
for F2 (92 bytes)

parameter 1

Y.N. Srikant 13

Samples of Generated Code –
 Dynamic Allocation (with JSR instruction)

//Initialization
100: Move #800, SP

...
//Code for F1
200: Action code seg 1
230: Add #92, SP
238: Move param1, @SP
242: JSR 290
250: Sub #92, SP
258: Action code seg 2
286: return

//Code for F2
290: Action code seg 3
330: Add #64, SP
338: JSR 200
346: Sub #64, SP
354: Action code seg 4
382: Add #92, SP
390: JSR 290
398: Sub #92, SP
406: Action code seg 5
454: return

Y.N. Srikant 14

A Simple Code Generator –

Scheme A

Treat each quadruple as a ‘macro’
Example: The quad A := B + C will result in

Load B, R1 OR Load B, R1
Load C, R2
Add R2, R1 Add C, R1
Store R1, A Store R1, A

Results in inefficient code
Repeated load/store of registers

Very simple to implement

Y.N. Srikant 15

A Simple Code Generator –

Scheme B

Track values in registers and reuse them
If any operand is already in a register, take advantage of it
Register descriptors

Tracks <register, variable name> pairs
A single register can contain values of multiple
names, if they are all copies

Address descriptors
Tracks <variable name, locations> pairs
A single name may have its value in multiple
locations, such as, memory, register, and stack

Y.N. Srikant 16

A Simple Code Generator –

Scheme B

Leave computed result in a register as long as
possible
Store only at the end of a basic block or when that
register is needed for another computation

On exit from a basic block, store only live variables which
are not in their memory locations already (use address
descriptors to determine the latter)
If liveness information is not known, assume that all
variables are live at all times

Y.N. Srikant 17

Example

A := B+C
If B and C are in registers R1 and R2, then
generate

ADD R2,R1 (cost = 1, result in R1)
legal only if B is not live after the statement

If R1 contains B, but C is in memory
ADD C,R1 (cost = 2, result in R1) or
LOAD C, R2
ADD R2,R1 (cost = 3, result in R1)

legal only if B is not live after the statement
attractive if the value of C is subsequently used (it can be
taken from R2)

Y.N. Srikant 18

Next Use Information

Next use info is used in code generation and register allocation
Next use of A in quad i is j if

Quad i : A = ... (assignment to A)
(control flows from i to j with no assignments to A)

Quad j : = A op B (usage of A)
In computing next use, we assume that on exit from the basic
block

All temporaries are considered non-live
All programmer defined variables (and non-temps) are live

Each procedure/function call is assumed to start a basic block
Next use is computed on a backward scan on the quads in a
basic block, starting from the end
Next use information is stored in the symbol table

Y.N. Srikant 19

Example of computing Next Use
3 T1 := 4 * I T1 –

(nlv, lu 0, nu 5), I –

(lv, lu 3, nu 10)
4 T2 := addr(A) –

4 T2 –

(nlv, lu 0, nu 5)
5 T3 := T2[T1] T3 –

(nlv, lu 0, nu 8), T2 –

(nlv, lu 5, nnu),
T1 –

(nlv, lu 5, nu 7)
6 T4 := addr(B) –

4 T4 –

(nlv, lu 0, nu 7)
7 T5 := T4[T1] T5 –

(nlv, lu 0, nu 8), T4 –

(nlv, lu 7, nnu),
T1 –

(nlv, lu 7, nnu)
8 T6 := T3 * T5 T6 –

(nlv, lu 0, nu 9),T3 –

(nlv, lu 8, nnu),
T5 –

(nlv, lu 8, nnu)
9 PROD := PROD + T6 PROD –

(lv, lu 9, nnu), T6 –

(nlv, lu 9, nnu)

10 I := I + 1 I –

(lv, lu 10, nu 11)
11 if I ≤

20 goto 3 I –

(lv, lu 11, nnu)

Y.N. Srikant 20

Scheme B –

The algorithm

We deal with one basic block at a time
We assume that there is no global register allocation
For each quad A := B op C do the following

Find a location L to perform B op C
Usually a register returned by GETREG() (could be a mem loc)

Where is B?
B’ , found using address descriptor for B
Prefer register for B’ , if it is available in memory and register
Generate Load B’ , L (if B’ is not in L)

Where is C?
C’ , found using address descriptor for C
Generate op C’ , L

Update descriptors for L and A
If B/C have no next uses, update descriptors to reflect this
information

Y.N. Srikant 21

Function GETREG()

Finds L for computing A := B op C
1. If B is in a register (say R), R holds no other names, and

B has no next use, and B is not live after the block, then return R
2. Failing (1), return an empty register, if available
3. Failing (2)

If A has a next use in the block, OR
if B op C needs a register (e.g., op is an indexing operator)

Use a heuristic to find an occupied register
a register whose contents are referenced farthest in future, or
the number of next uses is smallest etc.

Spill it by generating an instruction, MOV R,mem
mem is the memory location for the variable in R
That variable is not already in mem

Update Register and Address descriptors
4. If A is not used in the block, or no suitable register can be found

Return a memory location for L

Y.N. Srikant 22

Example

Statements Code Generated Register
Descriptor

Address
Descriptor

T := A * B Load A,R0
Mult B, R0

R0 contains T T in R0

U := A + C Load A, R1
Add C, R1

R0 contains T
R1 contains U

T in R0
U in R1

V := T -

U Sub R1, R0 R0 contains V
R1 contains U

U in R1
V in R0

W := V * U Mult R1, R0 R0 contains W W in R0

Load R0, W W in memory
(restored)

T,U, and V are temporaries - not live at the end of the block
W is a non-temporary - live at the end of the block, 2 registers

Y.N. Srikant 23

Optimal Code Generation
 -

The Sethi-Ullman Algorithm
Generates the shortest sequence of instructions

Provably optimal algorithm (w.r.t. length of the sequence)
Suitable for expression trees (basic block level)
Machine model

All computations are carried out in registers
Instructions are of the form op R,R or op M,R

Always computes the left subtree into a register and
reuses it immediately

Two phases
Labelling phase
Code generation phase

Y.N. Srikant 24

The Labelling Algorithm

Labels each node of the tree with an integer:
fewest no. of registers required to evaluate the tree
with no intermediate stores to memory
Consider binary trees

For leaf nodes
if n is the leftmost child of its parent then

label(n)

:=

1

else label(n)

:=

0
For internal nodes

label(n) = max (l1, l2), if l1<> l2
= l1

+ 1, if l1

= l2

Y.N. Srikant 25

Labelling -

Example
n5

n3

n1

a b

n2

c d

n4

e f

R0

R0

R0

R1

R1
R1

R1

R0

1 0 1 0

1 1

2

2

1

1 0

Y.N. Srikant 26

Code Generation Phase –
 Procedure GENCODE(n)

RSTACK – stack of registers, R0,...,R(r-1)
TSTACK – stack of temporaries, T0,T1,...
A call to Gencode(n) generates code to evaluate a
tree T, rooted at node n, into the register
top(RSTACK) ,and

the rest of RSTACK remains in the same state as the one
before the call

A swap of the top two registers of RSTACK is
needed at some points in the algorithm to ensure
that a node is evaluated into the same register as its
left child.

Y.N. Srikant 27

The Code Generation Algorithm (1)

Procedure gencode(n);
{

/* case 0 */
if

n is a leaf representing
operand N and is the
leftmost child of its parent

then
print(LOAD N, top(RSTACK))

n
N

leaf node

Y.N. Srikant 28

The Code Generation Algorithm (2)

/* case 1 */
else if

n is an interior node with operator
OP, left child n1, and right child n2

then
if label(n2) == 0 then {

let N be the operand for n2;
gencode(n1);
print(OP N, top(RSTACK));

}

n

n1 n2
N

leaf node

OP

Y.N. Srikant 29

The Code Generation Algorithm (3)

/* case 2 */
else if ((1 < label(n1) < label(n2))

and(label(n1) < r))
then {

swap(RSTACK); gencode(n2);
R := pop(RSTACK); gencode(n1);
/* R holds the result of n2 */
print(OP R, top(RSTACK));
push (RSTACK,R);
swap(RSTACK);
}

n

n1 n2

>label(n1)

OP

<r

The swap() function ensures
that a node is evaluated into
the same register as its left
child

Y.N. Srikant 30

The Code Generation Algorithm (4)

/* case 3 */
else if ((1 < label(n2) < label(n1))

and(label(n2) < r))
then {

gencode(n1);
R := pop(RSTACK); gencode(n2);
/* R holds the result of n1 */
print(OP top(RSTACK), R);
push (RSTACK,R);
}

n

n1 n2

<r

OP

>label(n2)

Y.N. Srikant 31

The Code Generation Algorithm (5)

/* case 4, both labels are > r */
else {

gencode(n2); T:= pop(TSTACK);
print(LOAD top(RSTACK), T);
gencode(n1);
print(OP T, top(RSTACK));
push(TSTACK, T);
}

}

n

n1 n2

>r

OP

>r

	Code Generation – Part 1
	Outline of the Lecture
	Code Generation – Main Issues (1)
	Code Generation – Main Issues (2)
	Samples of Generated Code
	Samples of Generated Code – �Static Allocation (no JSR instruction)
	Samples of Generated Code – �Static Allocation (no JSR instruction)
	Samples of Generated Code – �Static Allocation (with JSR instruction)
	Samples of Generated Code – �Static Allocation (with JSR instruction)
	Samples of Generated Code – �Dynamic Allocation (no JSR instruction)
	Samples of Generated Code – �Dynamic Allocation (no JSR instruction)
	Samples of Generated Code – �Dynamic Allocation (with JSR instruction)
	Samples of Generated Code – �Dynamic Allocation (with JSR instruction)
	A Simple Code Generator – Scheme A
	A Simple Code Generator – Scheme B
	A Simple Code Generator – Scheme B
	Example
	Next Use Information
	Example of computing Next Use
	Scheme B – The algorithm
	Function GETREG()
	Example
	Optimal Code Generation�- The Sethi-Ullman Algorithm
	The Labelling Algorithm
	Labelling - Example
	Code Generation Phase –�Procedure GENCODE(n)
	The Code Generation Algorithm (1)
	The Code Generation Algorithm (2)
	The Code Generation Algorithm (3)
	The Code Generation Algorithm (4)
	The Code Generation Algorithm (5)

