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Outline of the Lecture
1.

 
Code generation –

 
main issues

2.
 

Samples of generated code
3.

 
Two Simple code generators

4.
 

Optimal code generation
a)

 
Sethi-Ullman algorithm

b)
 

Dynamic programming based algorithm
c)

 
Tree pattern matching based algorithm

5.
 

Code generation from DAGs
6.

 
Peephole optimizations

Topics 1,2,3,and 4(a) were covered in part 1 of the 
lecture
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Optimal Code Generation
 -

 
The Sethi-Ullman Algorithm
Generates the shortest sequence of instructions

Provably optimal algorithm (w.r.t. length of the sequence)
Suitable for expression trees (basic block level)
Machine model

All computations are carried out in registers
Instructions are of the form op R,R  or  op M,R

Always computes the left subtree into a register and 
reuses it immediately

Two phases
Labelling phase
Code generation phase
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The Labelling Algorithm

Labels each node of the tree with an integer: 
fewest no. of registers required to evaluate the tree 
with no intermediate stores to memory
Consider binary trees

For leaf nodes
if n is the leftmost child of its parent then   

label(n) := 1 else label(n) := 0
For internal nodes

label(n) =  max (l1, l2),  if   l1<> l2
=  l1 + 1,  if   l1 = l2
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Labelling -
 

Example
n5

n3

n1

a b

n2

c d

n4

e f

R0

R0

R0

R1

R1
R1

R1

R0

1 0 1 0

1 1

2

2

1

1 0
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Code Generation Phase –
 Procedure GENCODE(n)

RSTACK – stack of registers, R0,...,R(r-1)
TSTACK – stack of temporaries, T0,T1,...
A call to Gencode(n) generates code to evaluate a 
tree T, rooted at node n, into the register 
top(RSTACK) ,and 

the rest of RSTACK remains in the same state as the one 
before the call 

A swap of the top two registers of RSTACK is 
needed at some points in the algorithm to ensure 
that a node is evaluated into the same register as its 
left child.
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The Code Generation Algorithm (1)

Procedure gencode(n);
{ /* case 0 */

if
n is a leaf representing   
operand N and is the 
leftmost child of its parent 

then
print(LOAD N, top(RSTACK))

n
N

leaf node
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The Code Generation Algorithm (2)

/* case 1 */
else if

n is an interior node with operator 
OP, left child n1, and right child n2 

then
if label(n2) == 0 then {

let N be the operand for n2;
gencode(n1);
print(OP N, top(RSTACK));

}

n

n1 n2
N

leaf node

OP
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The Code Generation Algorithm (3)

/* case 2 */
else if ((1 < label(n1) < label(n2))

and( label(n1) < r))
then {

swap(RSTACK); gencode(n2);
R := pop(RSTACK); gencode(n1);
/* R holds the result of n2 */
print(OP R, top(RSTACK));
push (RSTACK,R); 
swap(RSTACK);
}

n

n1 n2

>label(n1)

OP

<r

The swap() function ensures
that a node is evaluated into
the same register as its left
child
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The Code Generation Algorithm (4)

/* case 3 */
else if ((1 <

 
label(n2) <

 
label(n1))

and( label(n2) < r))
then {

gencode(n1);
R := pop(RSTACK); gencode(n2);
/* R holds the result of n1 */
print(OP  top(RSTACK), R);
push (RSTACK,R); 
}

n

n1 n2

<r

OP

>label(n2)
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The Code Generation Algorithm (5)

/* case 4, both labels are >
 

r */
else {

gencode(n2); T:= pop(TSTACK);
print(LOAD top(RSTACK), T);
gencode(n1); 
print(OP T, top(RSTACK));
push(TSTACK, T);
}

}

n

n1 n2

>r

OP

>r
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Code Generation Phase –
 

Example 1

No. of registers = r = 2

n5 n3 n1 a Load a, R0
opn1 b, R0

n2 c Load c, R1
opn2 d, R1

opn3 R1, R0
n4 e Load e, R1

opn4 f, R1
opn5 R1, R0

n5

n3 n4

n1 n2 e f

a b c d

1 1

12

3
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Code Generation Phase –
 

Example 2

n5

n3 n4

n1 n2 e f

a b c d

No. of registers = r = 1. 
Here we choose rst first so that lst can be 
computed into R0 later (case 4)

n5 n4 e Load e, R0
opn4  f, R0

Load R0, T0 {release R0}
n3 n2 c Load c, R0

opn2 d, R0
Load R0, T1 {release R0}
n1 a Load a, R0

opn1 b, R0
opn3 T1, R0 {release T1}

opn5 T0, R0 {release T0}

1 1

12

3
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Dynamic Programming based 
Optimal Code Generation for Trees

Broad class of register machines
r interchangeable registers, R0,...,Rr-1 
Instructions of the form Ri := E

If E involves registers, Ri must be one of them
Ri := Mj, Ri := Ri op Rj, Ri := Ri op Mj, Ri := Rj, Mi := Rj

Based on principle of contiguous evaluation
Produces optimal code for trees (basic block 
level)
Can be extended to include a different cost 
for each instruction



Y.N. Srikant 15

Contiguous Evaluation

First evaluate subtrees of T
that need to be evaluated into 
memory. Then,

Rest of T1, T2, op, in that 
order, OR,
Rest of T2, T1, op, in that 
order

Part of T1, part of T2, part of 
T1 again, etc., is not 
contiguous evaluation
Contiguous evaluation is 
optimal!

No higher cost and no more 
registers than optimal 
evaluation

T1 T2

op

Tree T
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The Algorithm (1)

1.
 

Compute in a bottom-up manner, for each 
node n of T, an array of costs, C

C[i] = min cost of computing the complete 
subtree rooted at n, assuming i registers to be 
available

Consider each machine instruction that matches at n
and consider all possible contiguous evaluation orders 
(using dynamic programming)
Add the cost of the instruction that matched at node n
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The Algorithm (2)

Using C, determine the subtrees that must be 
computed into memory (based on cost)
Traverse T, and emit code

memory computations first
rest later, in the order needed to obtain optimal 
cost

Cost of computing a tree into memory = cost 
of computing the tree using all registers + 1 
(store cost)
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An Example
Max no. of registers = 2

Node 2: matching instructions 

Ri = Ri – M (i = 0,1) and 
Ri = Ri – Rj (i,j = 0,1)

C2[1] = C4[1] + C5[0] + 1
= 1+0+1 = 2

C2[2] = Min{ C4[2] + C5[1] + 1, 
C4[2] + C5[0] + 1,    
C4[1] + C5[2] + 1,      
C4[1] + C5[1] + 1,      
C4[1] + C5[0] + 1}

= Min{1+1+1,1+0+1,1+1+1, 
1+1+1,1+0+1}

= Min{3,2,3,3,2} = 2

C2[0] = 1+ C2[2] = 1+2 = 3

e

+

- *

/a b c

d

1

2 3

4 5 6 7

8 9

R0=R1+R0

R1=R1 -

 

b

R1= a

R0=R0*R1

R0= c

R1=R1/e

R1=d

(0,1,1)

(8,8,7)

(5,5,4)

(3,2,2)(0,1,1) (0,1,1)

(0,1,1) (0,1,1,)

(3,2,2)

R0 = c
R1 = d
R1 = R1 / e
R0 = R0 * R1
R1 = a
R1 = R1 – b
R0 = R1 + R0

Generated sequence 
of instructions
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Example –
 

continued
 Cost of computing node 3 with 2 registers

#regs for node 6 #regs for node 7 cost for node 3
2 0 1+3+1 = 5
2 1 1+2+1 = 4
1 0 1+3+1 = 5
1 1 1+2+1 = 4
1 2 1+2+1 = 4

min value 4

Cost of computing with 1 register = 5 (row 4, red)
Cost of computing into memory = 4 + 1 = 5

Triple = (5,5,4)
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Example –
 

continued
 Traversal and Generating Code

Min cost for node 1=7, Instruction: R0 := R1+R0
Compute RST(3) with 2 regs into R0
Compute LST(2) into R1

For node 3,

 

instruction: R0 := R0 * R1
Compute RST(7) with 2 regs into R1
Compute LST(6) into R0

For node 2, instruction: R1 := R1 –

 

b
Compute RST(5) into memory (available already)
Compute LST(4) into R1

For node 4, instruction: R1 := a
For node 7,

 

instruction: R1 := R1 / e
Compute RST(9) into memory (already available)
Compute LST(8) into R1

For node 8,

 

instruction: R1 := d
For node 6,

 

instruction: R0 := c
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Code Generation by Tree Rewriting

Caters to complex instruction sets and very 
general machine models
Can produce locally optimal code (basic 
block level)
Non-contiguous evaluation orders are 
possible without sacrificing optimality
Easily retargetable to different machines
Automatic generation from specifications is 
possible
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Example
:=

ind +

const1memb+

+ ind

+

consti regsp

regspconsta

Tree intermediate
code for a[i] = b+1,
a and i are local, and
b is global
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Match #1
:=

ind +

const1memb+

+ ind

+

consti regsp

regspconsta

Pattern
regi consta

Code
Load #a, R0

Code so far:
Load #a, R0
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Match #2
:=

ind +

const1memb+

+ ind

+

consti regsp

regspreg0

Pattern
regi +(regi , regj)

Code
Add SP, R0

Code so far:
Load #a, R0
Add SP, R0
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ind

:=

Match #3

+

const1memb+

reg0 ind

+

consti regsp

Pattern
regi ind (+(constc , regj))

OR
regi +(regi , ind (+(constc , regj)))

Code for 2nd alternative (chosen)
Add #i(SP), R0

Code so far:
Load #a, R0
Add SP, R0
Add #i(SP), R0
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Match #4
:=

ind +

const1memb

Pattern
regi mema

Code
Load b, R1

reg0

Code so far:
Load #a, R0
Add SP, R0
Add #i(SP), R0
Load b, R1
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Match #5
:=

ind +

const1reg1reg0

Pattern
regi +(regi , const1)

Code
Inc R1

Code so far:
Load #a, R0
Add SP, R0
Add #i(SP), R0
Load b, R1
Inc R1
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Match #6
:=

ind reg1

reg0

Pattern
mem :=(ind (regi) , regj)

Code
Load R1, *R0

Code so far:
Load #a, R0
Add SP, R0
Add #i(SP), R0
Load b, R1
Inc R1
Load R1, *R0
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Code Generator Generators (CGG)

Based on tree pattern matching and dynamic 
programming
Accept tree patterns, associated costs, and 
semantic actions (for register allocation and object 
code emission)
Produce tree matchers that produce a cover of 
minimum cost
Make two passes

First pass is a bottom-up pass and finds a set of patterns 
that cover the tree with minimum cost
Second pass executes the semantic actions associated 
with the minimum cost patterns at the nodes they matched

BEG, Twig, BURG, and IBURG are such CGGs
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Code Generator Generators (2)

BEG and IBURG
Produce similar matchers
Use dynamic programming (DP) at compile time
Costs can involve arbitrary computations
The matcher is hard coded

TWIG
Uses a table-driven tree pattern matcher based on Aho-Corasick string 
pattern matcher
High overheads, could take O(n2) time, n being the number of nodes in the 
subject tree
Uses DP at compile time
Costs can involve arbitrary computations

BURG
Uses BURS (bottom-up rewrite system) theory to move DP to compile-
compile time (matcher generation time)
Table-driven, more complex, but generates optimal code in O(n) time
Costs must be constants
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EBNF Grammar for iburg
 

Specifications
 (Adapted From

 
Fraser [ACM LOPLAS, Sep 1992])

grammar → { dcl } %% { rule }
dcl → %START nonterm

|  %TERM { identier = integer }
rule → nonterm : tree = integer [ cost ] ;
cost → ( integer )
tree → term ( tree , tree )

|   term ( tree )
|   term
|   nonterm
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IBURG Specifications (2) (Adapted from
 Fraser [ACM LOPLAS, Sep 1992])

1.   %term  ADDI=309  ADDRLP=295  ASGNI=53
2.   %term  CNSTI=21  CVCI=85  I0I=661  INDIRC=67
3.   %%
4.     stmt:      ASGNI (disp,reg) = 4 (1);
5.     stmt:       reg = 5;
6.       reg:      ADDI (reg,rc) = 6 (1);
7.       reg:      CVCI (INDIRC (disp)) = 7 (1);
8.       reg:       I0I = 8;
9.       reg:       disp = 9 (1);
10.   disp:       ADDI (reg,con) = 10;
11.   disp:       ADDRLP = 11;
12.       rc:       con = 12;
13.       rc:       reg = 13;
14.    con:       CNSTI = 14;
15.    con:       I0I = 15;
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IBURG Tree Matcher

Produces two functions, label and reduce
User calls these routines 
label(p) makes a bottom-up, left-to-right pass over the subject 
tree p and computes the minimum cost cover, if there is one
Each node is labeled with (M,C) ( or [M,C] for chain rules) to 
indicate that the pattern associated with rule M matches the node 
with cost C
Nodes are annotated with (M,C) (or [M,C]) only if  C is min cost 
for nonterminal of rule M (considering all rules that match as well)

Example: For ADDI node, rule 10 matches, and the chain rules 9, 
5, and 13 also match
But, cost of this match for rules 9,5, and 13 is not less than the 
cost during previous matches for the same nonterminals reg, 
stmt, and rc on the LHS of rules 9,5, and 13 resp.
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Example of Labeling {int i; char c; i = c + 4;}

ASGNI

ADDRLP i

CNSTI 4CVCI

INDIRC

ADDI

ADDRLP c

disp:  ADDRLP (11,0)
reg:  disp [9, 0+1=1]
stmt:  reg [5, 1+0=1]
rc:  reg [13, 1+0=1]

reg:  ADDI(reg,rc) (6, 1+0+1=2)
stmt:  reg [5, 2+0=2]
rc:  reg [13, 2+0=2]
disp:  ADDI(reg,con) (10, 1+0+0=1)

stmt: ASGNI(disp,reg)
(4, 0+2+1=3)

reg: CVCI (INDIRC (disp)) (7, 0+1=1)
stmt: reg [5, 1+0=1]
rc: reg [13, 1+0=1] disp: ADDRLP (11,0)

reg: disp [9, 0+1=1]
stmt: reg [5, 1+0=1]
rc: reg [13, 1+0=1]

con: CNSTI (14,0)
rc: con [12, 0+0=0]

(Adapted From

 

Fraser 
[ACM LOPLAS, Sep 1992])
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IBURG Tree Matcher (2)

Once labeled, the reducer traverses the 
subject tree, in a top-down manner
During a visit to each node, user-supplied 
code that implements semantic side effects 
such as register allocation and emission of 
code, is executed
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Code Generation from DAGs

Optimal code generation from DAGs is NP-
Complete
DAGs are divided into trees and then 
processed
We may replicate shared trees

Code size increases drastically
We may store result of a tree (root) into 
memory and use it in all places where the 
tree is used

May result in sub-optimal code
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DAG example: Duplicate shared trees
1

2 3

4 6

7 8

10 11

5

98

10 11

5

98

10 11

1

2 3

4 5 6

8 9

10 11

7
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DAG example: Compute shared trees 
once and share results

1

2 3

4 5 6

8 9

10 11

7

1

2 3

4 5 65

7

5

8

8 9

8

10 11

12

3
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