
Code Generation –

Part 2

Y. N. Srikant
Computer Science and Automation
Indian Institute of Science
Bangalore 560 012

NPTEL Course on Compiler Design

Y.N. Srikant 2

Outline of the Lecture
1.

Code generation –

main issues

2.

Samples of generated code
3.

Two Simple code generators

4.

Optimal code generation
a)

Sethi-Ullman algorithm

b)

Dynamic programming based algorithm
c)

Tree pattern matching based algorithm

5.

Code generation from DAGs
6.

Peephole optimizations

Topics 1,2,3,and 4(a) were covered in part 1 of the
lecture

Y.N. Srikant 3

Optimal Code Generation
 -

The Sethi-Ullman Algorithm
Generates the shortest sequence of instructions

Provably optimal algorithm (w.r.t. length of the sequence)
Suitable for expression trees (basic block level)
Machine model

All computations are carried out in registers
Instructions are of the form op R,R or op M,R

Always computes the left subtree into a register and
reuses it immediately

Two phases
Labelling phase
Code generation phase

Y.N. Srikant 4

The Labelling Algorithm

Labels each node of the tree with an integer:
fewest no. of registers required to evaluate the tree
with no intermediate stores to memory
Consider binary trees

For leaf nodes
if n is the leftmost child of its parent then

label(n) := 1 else label(n) := 0
For internal nodes

label(n) = max (l1, l2), if l1<> l2
= l1 + 1, if l1 = l2

Y.N. Srikant 5

Labelling -

Example
n5

n3

n1

a b

n2

c d

n4

e f

R0

R0

R0

R1

R1
R1

R1

R0

1 0 1 0

1 1

2

2

1

1 0

Y.N. Srikant 6

Code Generation Phase –
 Procedure GENCODE(n)

RSTACK – stack of registers, R0,...,R(r-1)
TSTACK – stack of temporaries, T0,T1,...
A call to Gencode(n) generates code to evaluate a
tree T, rooted at node n, into the register
top(RSTACK) ,and

the rest of RSTACK remains in the same state as the one
before the call

A swap of the top two registers of RSTACK is
needed at some points in the algorithm to ensure
that a node is evaluated into the same register as its
left child.

Y.N. Srikant 7

The Code Generation Algorithm (1)

Procedure gencode(n);
{ /* case 0 */

if
n is a leaf representing
operand N and is the
leftmost child of its parent

then
print(LOAD N, top(RSTACK))

n
N

leaf node

Y.N. Srikant 8

The Code Generation Algorithm (2)

/* case 1 */
else if

n is an interior node with operator
OP, left child n1, and right child n2

then
if label(n2) == 0 then {

let N be the operand for n2;
gencode(n1);
print(OP N, top(RSTACK));

}

n

n1 n2
N

leaf node

OP

Y.N. Srikant 9

The Code Generation Algorithm (3)

/* case 2 */
else if ((1 < label(n1) < label(n2))

and(label(n1) < r))
then {

swap(RSTACK); gencode(n2);
R := pop(RSTACK); gencode(n1);
/* R holds the result of n2 */
print(OP R, top(RSTACK));
push (RSTACK,R);
swap(RSTACK);
}

n

n1 n2

>label(n1)

OP

<r

The swap() function ensures
that a node is evaluated into
the same register as its left
child

Y.N. Srikant 10

The Code Generation Algorithm (4)

/* case 3 */
else if ((1 <

label(n2) <

label(n1))

and(label(n2) < r))
then {

gencode(n1);
R := pop(RSTACK); gencode(n2);
/* R holds the result of n1 */
print(OP top(RSTACK), R);
push (RSTACK,R);
}

n

n1 n2

<r

OP

>label(n2)

Y.N. Srikant 11

The Code Generation Algorithm (5)

/* case 4, both labels are >

r */
else {

gencode(n2); T:= pop(TSTACK);
print(LOAD top(RSTACK), T);
gencode(n1);
print(OP T, top(RSTACK));
push(TSTACK, T);
}

}

n

n1 n2

>r

OP

>r

Y.N. Srikant 12

Code Generation Phase –

Example 1

No. of registers = r = 2

n5 n3 n1 a Load a, R0
opn1 b, R0

n2 c Load c, R1
opn2 d, R1

opn3 R1, R0
n4 e Load e, R1

opn4 f, R1
opn5 R1, R0

n5

n3 n4

n1 n2 e f

a b c d

1 1

12

3

Y.N. Srikant 13

Code Generation Phase –

Example 2

n5

n3 n4

n1 n2 e f

a b c d

No. of registers = r = 1.
Here we choose rst first so that lst can be
computed into R0 later (case 4)

n5 n4 e Load e, R0
opn4 f, R0

Load R0, T0 {release R0}
n3 n2 c Load c, R0

opn2 d, R0
Load R0, T1 {release R0}
n1 a Load a, R0

opn1 b, R0
opn3 T1, R0 {release T1}

opn5 T0, R0 {release T0}

1 1

12

3

Y.N. Srikant 14

Dynamic Programming based
Optimal Code Generation for Trees

Broad class of register machines
r interchangeable registers, R0,...,Rr-1
Instructions of the form Ri := E

If E involves registers, Ri must be one of them
Ri := Mj, Ri := Ri op Rj, Ri := Ri op Mj, Ri := Rj, Mi := Rj

Based on principle of contiguous evaluation
Produces optimal code for trees (basic block
level)
Can be extended to include a different cost
for each instruction

Y.N. Srikant 15

Contiguous Evaluation

First evaluate subtrees of T
that need to be evaluated into
memory. Then,

Rest of T1, T2, op, in that
order, OR,
Rest of T2, T1, op, in that
order

Part of T1, part of T2, part of
T1 again, etc., is not
contiguous evaluation
Contiguous evaluation is
optimal!

No higher cost and no more
registers than optimal
evaluation

T1 T2

op

Tree T

Y.N. Srikant 16

The Algorithm (1)

1.

Compute in a bottom-up manner, for each
node n of T, an array of costs, C

C[i] = min cost of computing the complete
subtree rooted at n, assuming i registers to be
available

Consider each machine instruction that matches at n
and consider all possible contiguous evaluation orders
(using dynamic programming)
Add the cost of the instruction that matched at node n

Y.N. Srikant 17

The Algorithm (2)

Using C, determine the subtrees that must be
computed into memory (based on cost)
Traverse T, and emit code

memory computations first
rest later, in the order needed to obtain optimal
cost

Cost of computing a tree into memory = cost
of computing the tree using all registers + 1
(store cost)

Y.N. Srikant 18

An Example
Max no. of registers = 2

Node 2: matching instructions

Ri = Ri – M (i = 0,1) and
Ri = Ri – Rj (i,j = 0,1)

C2[1] = C4[1] + C5[0] + 1
= 1+0+1 = 2

C2[2] = Min{ C4[2] + C5[1] + 1,
C4[2] + C5[0] + 1,
C4[1] + C5[2] + 1,
C4[1] + C5[1] + 1,
C4[1] + C5[0] + 1}

= Min{1+1+1,1+0+1,1+1+1,
1+1+1,1+0+1}

= Min{3,2,3,3,2} = 2

C2[0] = 1+ C2[2] = 1+2 = 3

e

+

- *

/a b c

d

1

2 3

4 5 6 7

8 9

R0=R1+R0

R1=R1 -

b

R1= a

R0=R0*R1

R0= c

R1=R1/e

R1=d

(0,1,1)

(8,8,7)

(5,5,4)

(3,2,2)(0,1,1) (0,1,1)

(0,1,1) (0,1,1,)

(3,2,2)

R0 = c
R1 = d
R1 = R1 / e
R0 = R0 * R1
R1 = a
R1 = R1 – b
R0 = R1 + R0

Generated sequence
of instructions

Y.N. Srikant 19

Example –

continued
 Cost of computing node 3 with 2 registers

#regs for node 6 #regs for node 7 cost for node 3
2 0 1+3+1 = 5
2 1 1+2+1 = 4
1 0 1+3+1 = 5
1 1 1+2+1 = 4
1 2 1+2+1 = 4

min value 4

Cost of computing with 1 register = 5 (row 4, red)
Cost of computing into memory = 4 + 1 = 5

Triple = (5,5,4)

Y.N. Srikant 20

Example –

continued
 Traversal and Generating Code

Min cost for node 1=7, Instruction: R0 := R1+R0
Compute RST(3) with 2 regs into R0
Compute LST(2) into R1

For node 3,

instruction: R0 := R0 * R1
Compute RST(7) with 2 regs into R1
Compute LST(6) into R0

For node 2, instruction: R1 := R1 –

b
Compute RST(5) into memory (available already)
Compute LST(4) into R1

For node 4, instruction: R1 := a
For node 7,

instruction: R1 := R1 / e
Compute RST(9) into memory (already available)
Compute LST(8) into R1

For node 8,

instruction: R1 := d
For node 6,

instruction: R0 := c

Y.N. Srikant 21

Code Generation by Tree Rewriting

Caters to complex instruction sets and very
general machine models
Can produce locally optimal code (basic
block level)
Non-contiguous evaluation orders are
possible without sacrificing optimality
Easily retargetable to different machines
Automatic generation from specifications is
possible

Y.N. Srikant 22

Example
:=

ind +

const1memb+

+ ind

+

consti regsp

regspconsta

Tree intermediate
code for a[i] = b+1,
a and i are local, and
b is global

Y.N. Srikant 23

Match #1
:=

ind +

const1memb+

+ ind

+

consti regsp

regspconsta

Pattern
regi consta

Code
Load #a, R0

Code so far:
Load #a, R0

Y.N. Srikant 24

Match #2
:=

ind +

const1memb+

+ ind

+

consti regsp

regspreg0

Pattern
regi +(regi , regj)

Code
Add SP, R0

Code so far:
Load #a, R0
Add SP, R0

Y.N. Srikant 25

ind

:=

Match #3

+

const1memb+

reg0 ind

+

consti regsp

Pattern
regi ind (+(constc , regj))

OR
regi +(regi , ind (+(constc , regj)))

Code for 2nd alternative (chosen)
Add #i(SP), R0

Code so far:
Load #a, R0
Add SP, R0
Add #i(SP), R0

Y.N. Srikant 26

Match #4
:=

ind +

const1memb

Pattern
regi mema

Code
Load b, R1

reg0

Code so far:
Load #a, R0
Add SP, R0
Add #i(SP), R0
Load b, R1

Y.N. Srikant 27

Match #5
:=

ind +

const1reg1reg0

Pattern
regi +(regi , const1)

Code
Inc R1

Code so far:
Load #a, R0
Add SP, R0
Add #i(SP), R0
Load b, R1
Inc R1

Y.N. Srikant 28

Match #6
:=

ind reg1

reg0

Pattern
mem :=(ind (regi) , regj)

Code
Load R1, *R0

Code so far:
Load #a, R0
Add SP, R0
Add #i(SP), R0
Load b, R1
Inc R1
Load R1, *R0

Y.N. Srikant 29

Code Generator Generators (CGG)

Based on tree pattern matching and dynamic
programming
Accept tree patterns, associated costs, and
semantic actions (for register allocation and object
code emission)
Produce tree matchers that produce a cover of
minimum cost
Make two passes

First pass is a bottom-up pass and finds a set of patterns
that cover the tree with minimum cost
Second pass executes the semantic actions associated
with the minimum cost patterns at the nodes they matched

BEG, Twig, BURG, and IBURG are such CGGs

Y.N. Srikant 30

Code Generator Generators (2)

BEG and IBURG
Produce similar matchers
Use dynamic programming (DP) at compile time
Costs can involve arbitrary computations
The matcher is hard coded

TWIG
Uses a table-driven tree pattern matcher based on Aho-Corasick string
pattern matcher
High overheads, could take O(n2) time, n being the number of nodes in the
subject tree
Uses DP at compile time
Costs can involve arbitrary computations

BURG
Uses BURS (bottom-up rewrite system) theory to move DP to compile-
compile time (matcher generation time)
Table-driven, more complex, but generates optimal code in O(n) time
Costs must be constants

Y.N. Srikant 31

EBNF Grammar for iburg

Specifications
 (Adapted From

Fraser [ACM LOPLAS, Sep 1992])

grammar → { dcl } %% { rule }
dcl → %START nonterm

| %TERM { identier = integer }
rule → nonterm : tree = integer [cost] ;
cost → (integer)
tree → term (tree , tree)

| term (tree)
| term
| nonterm

Y.N. Srikant 32

IBURG Specifications (2) (Adapted from
 Fraser [ACM LOPLAS, Sep 1992])

1. %term ADDI=309 ADDRLP=295 ASGNI=53
2. %term CNSTI=21 CVCI=85 I0I=661 INDIRC=67
3. %%
4. stmt: ASGNI (disp,reg) = 4 (1);
5. stmt: reg = 5;
6. reg: ADDI (reg,rc) = 6 (1);
7. reg: CVCI (INDIRC (disp)) = 7 (1);
8. reg: I0I = 8;
9. reg: disp = 9 (1);
10. disp: ADDI (reg,con) = 10;
11. disp: ADDRLP = 11;
12. rc: con = 12;
13. rc: reg = 13;
14. con: CNSTI = 14;
15. con: I0I = 15;

Y.N. Srikant 33

IBURG Tree Matcher

Produces two functions, label and reduce
User calls these routines
label(p) makes a bottom-up, left-to-right pass over the subject
tree p and computes the minimum cost cover, if there is one
Each node is labeled with (M,C) (or [M,C] for chain rules) to
indicate that the pattern associated with rule M matches the node
with cost C
Nodes are annotated with (M,C) (or [M,C]) only if C is min cost
for nonterminal of rule M (considering all rules that match as well)

Example: For ADDI node, rule 10 matches, and the chain rules 9,
5, and 13 also match
But, cost of this match for rules 9,5, and 13 is not less than the
cost during previous matches for the same nonterminals reg,
stmt, and rc on the LHS of rules 9,5, and 13 resp.

Y.N. Srikant 34

Example of Labeling {int i; char c; i = c + 4;}

ASGNI

ADDRLP i

CNSTI 4CVCI

INDIRC

ADDI

ADDRLP c

disp: ADDRLP (11,0)
reg: disp [9, 0+1=1]
stmt: reg [5, 1+0=1]
rc: reg [13, 1+0=1]

reg: ADDI(reg,rc) (6, 1+0+1=2)
stmt: reg [5, 2+0=2]
rc: reg [13, 2+0=2]
disp: ADDI(reg,con) (10, 1+0+0=1)

stmt: ASGNI(disp,reg)
(4, 0+2+1=3)

reg: CVCI (INDIRC (disp)) (7, 0+1=1)
stmt: reg [5, 1+0=1]
rc: reg [13, 1+0=1] disp: ADDRLP (11,0)

reg: disp [9, 0+1=1]
stmt: reg [5, 1+0=1]
rc: reg [13, 1+0=1]

con: CNSTI (14,0)
rc: con [12, 0+0=0]

(Adapted From

Fraser
[ACM LOPLAS, Sep 1992])

Y.N. Srikant 35

IBURG Tree Matcher (2)

Once labeled, the reducer traverses the
subject tree, in a top-down manner
During a visit to each node, user-supplied
code that implements semantic side effects
such as register allocation and emission of
code, is executed

Y.N. Srikant 36

Code Generation from DAGs

Optimal code generation from DAGs is NP-
Complete
DAGs are divided into trees and then
processed
We may replicate shared trees

Code size increases drastically
We may store result of a tree (root) into
memory and use it in all places where the
tree is used

May result in sub-optimal code

Y.N. Srikant 37

DAG example: Duplicate shared trees
1

2 3

4 6

7 8

10 11

5

98

10 11

5

98

10 11

1

2 3

4 5 6

8 9

10 11

7

Y.N. Srikant 38

DAG example: Compute shared trees
once and share results

1

2 3

4 5 6

8 9

10 11

7

1

2 3

4 5 65

7

5

8

8 9

8

10 11

12

3

	Code Generation – Part 2
	Outline of the Lecture
	Optimal Code Generation�- The Sethi-Ullman Algorithm
	The Labelling Algorithm
	Labelling - Example
	Code Generation Phase –�Procedure GENCODE(n)
	The Code Generation Algorithm (1)
	The Code Generation Algorithm (2)
	The Code Generation Algorithm (3)
	The Code Generation Algorithm (4)
	The Code Generation Algorithm (5)
	Code Generation Phase – Example 1
	Code Generation Phase – Example 2
	Dynamic Programming based �Optimal Code Generation for Trees
	Contiguous Evaluation
	The Algorithm (1)
	The Algorithm (2)
	An Example
	Example – continued�Cost of computing node 3 with 2 registers
	Example – continued�Traversal and Generating Code
	Code Generation by Tree Rewriting
	Example
	Match #1
	Match #2
	Match #3
	Match #4
	Match #5
	Match #6
	Code Generator Generators (CGG)
	Code Generator Generators (2)
	EBNF Grammar for iburg Specifications�(Adapted From Fraser [ACM LOPLAS, Sep 1992])
	IBURG Specifications (2) (Adapted from Fraser [ACM LOPLAS, Sep 1992])�
	IBURG Tree Matcher
	Example of Labeling {int i; char c; i = c + 4;}
	IBURG Tree Matcher (2)
	Code Generation from DAGs
	DAG example: Duplicate shared trees
	DAG example: Compute shared trees once and share results

