
Code Generation –

Part 3

Y. N. Srikant
Computer Science and Automation
Indian Institute of Science
Bangalore 560 012

NPTEL Course on Compiler Design

Y.N. Srikant 2

Outline of the Lecture
1. Code generation – main issues
2. Samples of generated code
3. Two Simple code generators
4. Optimal code generation

a) Sethi-Ullman algorithm
b) Dynamic programming based algorithm
c) Tree pattern matching based algorithm

5. Code generation from DAGs
6. Peephole optimizations

Topics 1,2,3,4, and 5 were covered in parts1 and 2
of the lecture.

Y.N. Srikant 3

Peephole Optimizations

Simple but effective local optimization
Usually carried out on machine code, but
intermediate code can also benefit from it
Examines a sliding window of code (peephole), and
replaces it by a shorter or faster sequence, if
possible
Each improvement provides opportunities for
additional improvements
Therefore, repeated passes over code are needed

Y.N. Srikant 4

Peephole Optimizations

Some well known peephole optimizations
eliminating redundant instructions
eliminating unreachable code
eliminating jumps over jumps
algebraic simplifications
strength reduction
use of machine idioms

Y.N. Srikant 5

Elimination of Redundant Loads and Stores

Y.N. Srikant 6

Eliminating Unreachable Code

An unlabeled instruction immediately
following an unconditional jump may be
removed

May be produced due to debugging code
introduced during development
Or due to updates to programs (changes for fixing
bugs) without considering the whole program
segment

Y.N. Srikant 7

Eliminating Unreachable Code

Y.N. Srikant 8

Flow-of-Control Optimizations

Y.N. Srikant 9

Reduction in Strength and Use of Machine
Idioms

x2 is cheaper to implement as x*x, than
as a call to an exponentiation routine
For integers, x*23 is cheaper to
implement as x << 3 (x left-shifted by 3
bits)
For integers, x/22 is cheaper to
implement as x >> 2 (x right-shifted by 2
bits)

Y.N. Srikant 10

Reduction in Strength and Use of Machine
Idioms

Floating point division by a constant can be
approximated as multiplication by a constant
Auto-increment and auto-decrement
addressing modes can be used wherever
possible

Subsume INCREMENT and DECREMENT
operations (respectively)

Multiply and add is a more complicated
pattern to detect

Y.N. Srikant 11

Code Generation: State-of-the-Art and
Future Directions

gnu provides a code generator generator
Takes machine description in register transfer
language (rtl)
Incorporates several optimizations (peephole,
instruction scheduling, register allocation etc.)
Generates efficient code generators
Tedious to use – rtl descriptions are hard to
understand and write!
Not easy to retarget to special processors, such
as DSP.

Y.N. Srikant 12

Code Generation: State-of-the-Art and
Future Directions

Tree pattern matching based CGGs are becoming
popular

No commercial packages available today
Combining instruction selection and scheduling is
still not possible
Instruction selection with power consumed as the
criterion is still not possible

requires power consumption information from the chip
manufacturer, and
facilities on the chip to turn off/on functional units/memory
banks etc., and
energy profiling of programs to identify ‘hot/idle’ regions

	Code Generation – Part 3
	Outline of the Lecture
	Peephole Optimizations
	Peephole Optimizations
	Elimination of Redundant Loads and Stores
	Eliminating Unreachable Code
	Eliminating Unreachable Code
	Flow-of-Control Optimizations
	Reduction in Strength and Use of Machine Idioms
	Reduction in Strength and Use of Machine Idioms
	Code Generation: State-of-the-Art and Future Directions
	Code Generation: State-of-the-Art and Future Directions

