
Global Register Allocation
 -

Part 1

Y N Srikant
Computer Science and Automation
Indian Institute of Science
Bangalore 560012

NPTEL Course on Compiler Design

Y.N. Srikant 2

Outline

Issues in Global Register Allocation
The Problem
Register Allocation based in Usage Counts
Linear Scan Register allocation
Chaitin’s graph colouring based algorithm

Y.N. Srikant 3

Some Issues in Register Allocation

Which values in a program reside in registers?
(register allocation)
In which register? (register assignment)

The two together are usually loosely referred to as register
allocation

What is the unit at the level of which register
allocation is done?

Typical units are basic blocks, functions and regions.
RA within basic blocks is called local RA
The other two are known as global RA
Global RA requires much more time than local RA

Y.N. Srikant 4

Some Issues in Register Allocation

Phase ordering between register allocation and
instruction scheduling

Performing RA first restricts movement of code during
scheduling – not recommended
Scheduling instructions first cannot handle spill code
introduced during RA

Requires another pass of scheduling

Tradeoff between speed and quality of allocation
In some cases e.g., in Just-In-Time compilation, cannot
afford to spend too much time in register allocation.

Y.N. Srikant 5

The Problem

Global Register Allocation assumes that allocation is
done beyond basic blocks and usually at function level
Decision problem related to register allocation :

Given an intermediate language program represented as a
control flow graph and a number k, is there an assignment
of registers to program variables such that no conflicting
variables are assigned the same register, no extra loads or
stores are introduced, and at most k registers are used.

This problem has been shown to be NP-hard (Sethi
1970).
Graph colouring is the most popular heuristic used.
However, there are simpler algorithms as well

Y.N. Srikant 6

Conflicting variables

Two variables interfere or conflict if their live
ranges intersect

A variable is live at a point p in the flow graph, if
there is a use of that variable in the path from p to
the end of the flow graph
A live range of a variable is the set of program
points (in the flow graph) at which it is live.
Typically, instruction no. in the basic block along
with the basic block no. is the representation for a
point.

Y.N. Srikant 7

Example

If (cond) A not live
then A =
else B =

X: if (cond) B not live
then = A
else = B

A and B both live

If (cond)

A= B=

If (cond)

=A =B

T F

F

B1

B2 B3

B4

B6
B5

Live range of A: B2, B4 B5
Live range of B: B3, B4, B6

Y.N. Srikant 8

Global Register Allocation via
 Usage Counts (for Single Loops)

Allocate registers for variables used within loops
Requires information about liveness of variables
at the entry and exit of each basic block (BB) of
a loop
Once a variable is computed into a register, it
stays in that register until the end of of the BB
(subject to existence of next-uses)
Load/Store instructions cost 2 units (because
they occupy two words)

Y.N. Srikant 9

Global Register Allocation via
 Usage Counts (for Single Loops)

1. For every usage of a variable v in a BB,
until it is first defined, do:

savings(v) = savings(v) + 1
after v is defined, it stays in the register any way,
and all further references are to that register

2. For every variable v computed in a BB, if it
is live on exit from the BB,

count a savings of 2, since it is not necessary to
store it at the end of the BB

Y.N. Srikant 10

Global Register Allocation via
 Usage Counts (for Single Loops)

Total savings per variable v are

liveandcomputed(v,B) in the second term is 1 or 0
On entry to (exit from) the loop, we load (store) a
variable live on entry (exit), and lose 2 units for each

But, these are “one time” costs and are neglected
Variables, whose savings are the highest will reside
in registers

((,) 2* (,))
B Loop

savings v B liveandcomputed v B
∈

+∑

Y.N. Srikant 11

Global Register Allocation via
 Usage Counts (for Single Loops)

Savings for the variables
B1 B2 B3 B4

a: (0+2)+(1+0)+(1+0)+(0+0) = 4
b: (3+0)+(0+0)+(0+0)+(0+2) = 5
c: (1+0)+(1+0)+(0+0)+(1+0) = 3
d: (0+2)+(1+0)+(0+0)+(1+0) = 4
e: (0+2)+(0+2)+(1+0)+(0+0) = 5
f: (1+0)+(1+0)+(0+2)+(0+0) = 4

If there are 3 registers, they will
be allocated to the variables, a, b,
and e

a = b*c
d = b-a
e = b/f

b = a-f
e = d+c f = e * a

b = c - d

bcf

B1

B2

B3

B4

acdeacdf

cdef

bcdf abcdef

aef

Y.N. Srikant 12

Global Register Allocation via
 Usage Counts (for Nested Loops)

We first assign registers for inner loops and then
consider outer loops. Let L1 nest L2
For variables assigned registers in L2, but not in L1

load these variables on entry to L2 and store them on exit
from L2

For variables assigned registers in L1, but not in L2
store these variables on entry to L2 and load them on exit
from L2

All costs are calculated keeping the above rules

Y.N. Srikant 13

Global Register Allocation via
 Usage Counts (for Nested Loops)

case 1: variables x,y,z
assigned registers in L2, but
not in L1

Load x,y,z on entry to L2
Store x,y,z on exit from L2

case 2: variables a,b,c
assigned registers in L1, but
not in L2

Store a,b,c on entry to L2
Load a,b,c on exit from L2

case 3: variables p,q assigned
registers in both L1 and L2

No special action

Body
of L2

L2 L1

Y.N. Srikant 14

A Fast Register Allocation Scheme

Linear scan register allocation(Poletto and
Sarkar 1999) uses the notion of a live interval
rather than a live range.
Is relevant for applications where compile
time is important such as in dynamic
compilation and in just-in-time compilers.
Other register allocation schemes based on
raph colouring are slow and are not suitable
for JIT and dynamic compilers

Y.N. Srikant 15

Linear Scan Register Allocation

Assume that there is some numbering of the
instructions in the intermediate form
An interval [i,j] is a live interval for variable v
if there is no instruction with number j’>j such
that v is live at j’ and no instruction with
number i’<i such that v is live at i
This is a conservative approximation of live
ranges: there may be subranges of [i,j] in
which v is not live but these are ignored

Y.N. Srikant 16

Live Interval Example

...
i’:

...
i:

...
j:

...
j’:

...

sequentially
numbered
instructions

} i – j : live interval for variable v

i’ does not exist

j’ does not exist

v not live

v not live

Y.N. Srikant 17

Example

If (cond)
then A=
else B=

X: if (cond)
then =A
else = B

If (cond)

A= B=

If (cond)

=A =B

T F

F

LIVE INTERVAL FOR A

A NOT LIVE HERE

Y.N. Srikant 18

Live Intervals

Given an order for pseudo-instructions and
live variable information, live intervals can be
computed easily with one pass through the
intermediate representation.
Interference among live intervals is assumed
if they overlap.
Number of overlapping intervals changes
only at start and end points of an interval.

Y.N. Srikant 19

The Data Structures

Live intervals are stored in the sorted order of
increasing start point.
At each point of the program, the algorithm
maintains a list (active list) of live intervals
that overlap the current point and that have
been placed in registers.
active list is kept in the order of increasing
end point.

Y.N. Srikant 20

i1 i2 i3 i4

i5 i6 i7

i8 i9 i10 i11
A B

Active lists (in order
of increasing end pt)

Active(A)= {i1}
Active(B)={i1,i5}
Active(C)={i8,i5}
Active(D)= {i7,i4,i11}

C

Example

Three registers enough for computation without spills

D

Sorted order of intervals
(according to start point):
i1, i5, i8, i2, i9, i6, i3, i10, i7, i4, i11

	Global Register Allocation�- Part 1�
	Outline
	Some Issues in Register Allocation
	Some Issues in Register Allocation
	The Problem
	Conflicting variables
	Example
	Global Register Allocation via�Usage Counts (for Single Loops)
	Global Register Allocation via�Usage Counts (for Single Loops)
	Global Register Allocation via�Usage Counts (for Single Loops)
	Global Register Allocation via�Usage Counts (for Single Loops)
	Global Register Allocation via�Usage Counts (for Nested Loops)
	Global Register Allocation via�Usage Counts (for Nested Loops)
	A Fast Register Allocation Scheme
	Linear Scan Register Allocation
	Live Interval Example
	Example
	Live Intervals
	The Data Structures
	Slide Number 20

