
Global Register Allocation
 -

 
Part 2

Y N Srikant
Computer Science and Automation
Indian Institute of Science
Bangalore 560012

NPTEL Course on Compiler Design



Y.N. Srikant 2

Outline

Issues in Global Register Allocation
The Problem
Register Allocation based in Usage Counts
Linear Scan Register allocation
Chaitin’s graph colouring based algorithm

Topics 1,2,3, and part of 4 were covered in part 
1 of the lecture.



Y.N. Srikant 3

A Fast Register Allocation Scheme

Linear scan register allocation(Poletto and 
Sarkar 1999) uses the notion of a live interval 
rather than a live range.
Is relevant for applications where compile 
time is important such as in dynamic 
compilation and in just-in-time compilers.
Other register allocation schemes based on 
raph colouring are slow and are not suitable 
for JIT and dynamic compilers 
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Linear Scan Register Allocation

Assume that there is some numbering of the 
instructions in the intermediate form
An interval [i,j] is a live interval for variable v 
if there is no instruction with number j’>j such 
that v is live at j’ and no instruction with 
number i’<i such that v is live at i
This is a conservative approximation of live 
ranges: there may be subranges of [i,j] in 
which v is not live but these are ignored



Y.N. Srikant 5

Live Interval Example

...
i’: 

...
i: 

...
j:

...
j’:

...

sequentially
numbered
instructions

} i – j : live interval for variable v

i’ does not exist

j’ does not exist

v not live

v not live
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Example

If (cond)
then A=
else B=

X: if (cond) 
then =A
else = B

If (cond)

A= B=

If (cond)

=A =B

T F

F

LIVE INTERVAL FOR A

A NOT LIVE HERE
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Live Intervals

Given an order for pseudo-instructions and 
live variable information, live intervals can be 
computed easily with one pass through the 
intermediate representation.
Interference among live intervals is assumed 
if they overlap.
Number of overlapping intervals changes 
only at start and end points of an interval.
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The Data Structures

Live intervals are stored in the sorted order of 
increasing start point.
At each point of the program, the algorithm 
maintains a list (active list) of live intervals 
that overlap the current point and that have 
been placed in registers.
active list is kept in the order of increasing 
end point.
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i1 i2 i3 i4

i5 i6 i7

i8 i9 i10 i11
A B

Active lists (in order
of increasing end pt)

Active(A)= {i1}
Active(B)={i1,i5}
Active(C)={i8,i5}
Active(D)= {i7,i4,i11}

C

Example

Three registers enough for computation without spills

D

Sorted order of intervals
(according to start point):
i1, i5, i8, i2, i9, i6, i3, i10, i7, i4, i11
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The Algorithm (1)

{ active :=  [ ];
for each live interval i, in order of increasing 

start point do
{ ExpireOldIntervals (i);

if length(active) == R then SpillAtInterval(i);
else { register[i] := a register removed from the 

pool of free registers;
add i to active, sorted by increasing end point

}
}

}
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The Algorithm (2)

ExpireOldIntervals (i)
{ for each interval j in active, in order of  

increasing end point do
{ if endpoint[j] > startpoint[i] then return

else { remove j from active;
add register[j] to pool of free registers;

}
}

}
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The Algorithm (3)

SpillAtInterval (i)
{ spill := last interval in active;

if endpoint [spill] > endpoint [i] then
{ register [i] := register [spill];

location [spill] := new stack location;
remove spill from active;
add i to active, sorted by increasing end point;

} else location [i] := new stack location;
}
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i1 i2 i3 i4

i5 i6 i7

i8 i9 i10 i11
A B C

Example 1

Three registers enough for computation without spills

D

Sorted order of intervals
(according to start point):
i1, i5, i8, i2, i9, i6, i3, i10, i7, i4, i11

Active lists (in order
of increasing end pt)

Active(A)= {i1}
Active(B)={i1,i5}
Active(C)={i8,i5}
Active(D)= {i7,i4,i11}



Y.N. Srikant 14

Example 2
A

B

C

D

E

1           2       3               4        5

1,2 : give A,B register
3: Spill C since endpoint[C] > endpoint [B]

4: A expires, give D register
5: B expires, E gets register

2 registers
available
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Example 3
A

B

C

D

E

1           2       3               4        5

1,2 : give A,B register
3: Spill B since endpoint[B] > endpoint [C]

give register to C

4: A expires, give D register
5: C expires, E gets register

2 registers
available
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Complexity of the Linear Scan 
Algorithm

If V is the number of live intervals and R the number 
of available physical registers, then if a balanced 
binary tree is used for storing the active intervals, 
complexity is O(V log R).
Empirical results reported in literature indicate that 
linear scan is significantly faster than graph 
colouring algorithms and code emitted is at most 
10% slower than that generated by an aggressive 
graph colouring algorithm.
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Chaitin’s
 

Formulation of the 
Register Allocation Problem

A graph colouring formulation on the 
interference graph
Nodes in the graph represent live ranges of 
variables or entities called webs
An edge connects two live ranges that interfere 
or conflict with one another
Usually both adjacency matrix and adjacency 
lists used to represent the graph.
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Chaitin’s
 

Formulation of the 
Register Allocation Problem

Assign colours to the nodes such that two 
nodes connected by an edge are not assigned 
the same colour

The number of colours available is the number 
of registers available on the machine
A k-colouring of the interference graph is 
mapped into an allocation with k registers
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Example

Two colourable Three colourable
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Idea behind Chaitin’s
 

Algorithm

Choose an arbitrary node of degree less than k and 
put it on the stack
Remove that vertex and all its edges from the stack

This may decrease the degree of some other nodes and 
cause some more nodes to have degree less than k

At some point, if all vertices have degree greater 
than or equal to k, some node has to be spilled
If no vertex needs to be spilled, successively pop 
vertices off stack and colour them in lowest colour
not used by neighbour.
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Simple example –
 

Given Graph

2

3

4 51

STACK

3 REGISTERS



Y.N. Srikant 22

Simple Example –
 

Delete Node 1

STACK
3 REGISTERS

2

3

4 51

2

1
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Simple Example –
 

Delete Node 2

STACK
3 REGISTERS

2

3

4 51

1
2
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Simple Example –
 

Delete Node 4

STACK

3 REGISTERS

2

3

4 51

1
2
4
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Simple Example –
 

Delete Nodes 3

STACK
3 REGISTERS

2

3

4 51

1
2
4
3
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Simple Example –
 

Delete Nodes 5

STACK
3 REGISTERS

2

3

4 51

1
2
4
3
5
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Simple Example –
 

Colour
 

Node 5

STACK

COLOURS

5

3 REGISTERS

1
2
4
3



Y.N. Srikant 28

Simple Example –
 

Colour
 

Node 3

STACK

COLOURS

5

3

3 REGISTERS

1
2
4
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Simple Example –
 

Colour
 

Node 4

STACK

COLOURS

5

3

4

3 REGISTERS

1
2
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Simple Example –
 

Colour
 

Node 2

STACK

COLOURS

5

3

4

2

3 REGISTERS

1
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Simple Example –
 

Colour
 

Node 1

STACK

COLOURS

5

3

2

1 4

3 REGISTERS
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Steps in Chaitin’s
 

Algorithm

Identify units for allocation (sometimes called 
renumbering)
Build the interference graph
Coalesce  by removing unnecessary move or 
copy instructions
Colour the graph, thereby selecting registers
Compute spill costs, simplify and add spill 
code till graph is colourable
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The Chaitin
 

Framework

RENUMBER BUILD COALESCE SIMPLIFY

SPILL CODE

SPILL COST SELECT
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An Example

Original code

x= 2
y = 4
w = x+ y
z = x+1
u = x*y
x= z*2

Code with symbolic registers

1. S1=2; (lv of S1: 1-5)
2. S2=4; (lv of S2: 2-5)
3. S3=s1+s2; (lv of S3: 3-4)
4. S4=s1+1; (lv of S4: 4-6)
5. S5=s1*s2; (lv of S5: 5-6)
6. S6=s4*2; (lv of S6: 6- ...)
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s5
s1s3 r3

s6 s2 s4
r1 r2

INTERFERENCE    GRAPH
HERE ASSUME VARIABLE Z (s4)  CANNOT OCCUPY r1
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Example(continued)

Final register allocated code

r1 = 2
r2= 4
r3= r1+r2
r3= r1+1
r1= r1 *r2
r2= r3+r2

Three registers are 
sufficient for no spills
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Renumbering -
 

Webs

The definition points and the use points for each 
variable v are assumed to be known
Each definition with its set of uses for v is a du-
chain
A web is a maximal union of du-chains such that, 
for each definition d and use u, either u is in the 
du-chain of d, or there exists a sequence 
d =d1 ,u1 ,d2 ,u2 ,…, dn ,un such that for each i, ui 
is in the du-chains of both di and di+1 .
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Renumbering -
 

Webs

Each web is given a unique symbolic register
Webs arise when variables are redefined 
several times in a program
Webs have intersecting du-chains, 
intersecting at the points of join in the control 
flow graph
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Example of Webs

Def y

Use x

Def x

Def y

Use x

Use y
Use x
Def x

Def x
Use y

B2
B1

B3

B4 B5

B6

W1: def x in B2, def x in B3, use x in 
B4, Use x in B5
W2: def x in B5, use x in B6
W3: def y in B2, use y in B4
W4: def y in B1, use y in B3

w3 w1

w2 w4
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Build Interference Graph

Create a node for each web and for each 
physical register in the interference graph
If two distinct webs interfere, that is, a 
variable associated with one web is live at a 
definition point of another add an edge 
between the two webs
If a  particular variable cannot reside in a 
register, add an edge between all webs 
associated with that variable and the register
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Copy Subsumption
 

or Coalescing

Consider a copy instruction: b := e in the program
If the live ranges of b and e do  not overlap, then b 
and e can be given the same register (colour)

Implied by lack of any edges between b and e in the 
interference graph

The copy instruction can then be removed from the 
final program
Coalesce by merging b and e into one node that 
contains the edges of both nodes
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Copy Subsumption
 

or Coalescing

b = e b = e

l.r of 
old b

l.r of 
new b

l.r of e

l.r of 
old b

l.r of 
new b

l.r of e

copy subsumption
is not possible; lr(e)
and lr(new b) interfere

copy subsumption is 
possible; lr(e) and lr(new b) 
do not interfere
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Example of coalescing

c

b

d

e

a

f

c

be

d

a

f

BEFORE AFTER

Copy inst: b:=e
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Coalescing

Coalesce all possible copy instructions 
Rebuild the graph 

may offer further opportunities for coalescing
build-coalesce phase is repeated till no further 
coalescing is possible.

Coalescing reduces the size of the 
graph and possibly reduces spilling
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Simple fact

Suppose the no. of registers available is R. 
If a graph G contains a node n with fewer 
than R neighbors then removing n and its 
edges from G will not affect its R-colourability
If G’ = G-{n} can be coloured with R colours, 
then so can G.  
After colouring G’,  just assign to n, a colour
different from its R-1 neighbours. 
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Simplification

If a node n in the interference graph has 
degree less than R, remove n and all its 
edges from the graph and place n on a 
colouring stack.
When no more such nodes are removable 
then we need to spill a node.
Spilling a variable x implies

loading x into a register at every use of x
storing x from register into memory at every 
definition of x
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Spilling Cost

The node to be spilled is decided on the basis of a 
spill cost for the live range represented by the node.
Chaitin’s estimate of spill cost of a live range v

cost(v) = 

where c is the cost of the op and d, the loop nesting depth.
10 in the eqn above approximates the no. of iterations of 
any loop
The node to be spilled is the one with MIN(cost(v)/deg(v))

all load or store 
operations in 
a live range v

*10dc∑
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Spilling Heuristics
Multiple heuristic functions are available for making spill 
decisions  (cost(v) as before)

1. h0 (v) = cost(v)/degree(v) : Chaitin’s heuristic
2. h1 (v) = cost(v)/[degree(v)]2
3. h2 (v) = cost(v)/[area(v)*degree(v)]
4. h3 (v) = cost(v)/[area(v)*(degree(v))2] 

where area(v) =

width(v,I) is the number of live ranges overlapping with 
instruction I and depth(v,I) is the depth of loop nesting of I in v

( , )

all instructions I 
in the live range v

( , ) *5depth v Iwidth v I∑
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Spilling Heuristics

area(v) represents the global contribution by v to 
register pressure, a measure of the need for 
registers at a point
Spilling a live range with high area releases 
register pressure; i.e., releases a register when it is 
most needed
Choose v with MIN(hi(v)), as the candidate to spill, 
if hi is the heuristic chosen
It is possible to use different heuristics at different 
times
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Here R = 3 and the graph is 3-colourable
No spilling is necessary

Example
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1 2

3

4
5

A 3-colourable graph which is not 
3-coloured by colouring heuristic

Example
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Spilling a Node
To spill a node we remove it from the graph and 
represent the effect of spilling as follows (It cannot 
just be removed from the graph).

Reload the spilled object at each use and store it in 
memory at each definition point 
This creates new webs with small live ranges but which will 
need registers.

After all spill decisions are made, insert spill code, 
rebuild the interference graph and then repeat the 
attempt to colour.
When simplification yields an empty graph then 
select colours, that is, registers
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Effect of Spilling

Def y

Use x

Def x

Def y

Use x

Use y
Use x
Def x

Def x
Use y

B2
B1

B3

B4 B5

B6

W1: def x in B2, def x in B3, use x in 
B4, Use x in B5
W2: def x in B5, use x in B6
W3: def y in B2, use y in B4
W4: def y in B1, use y in B3

w3 w1

w2 w4

x is spilled in
web W1
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Effect of Spilling

Def x
tmp=x
Def y

x = tmp
Use x 
Use y

x = tmp
Use x
Def x

Def x
tmp =x 
Use y 

Use x

Def y

B2

B4 B5

B6

B1

B3

w4

w6

w8 w5

w1 w2

w3

w7

Interference Graph

W1

W2

W3

W4

W5

W6 W7

W8 (tmp):
B2, B3, B4, B5
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Colouring
 

the Graph(selection)

Repeat
V= pop(stack).
Colours_used(v)= colours used by neighbours of V.
Colours_free(v)=all colours - Colours_used(v).
Colour (V) = any colour in Colours_free(v).
Until stack is empty

Convert the colour assigned to a symbolic register to 
the corresponding real registers name in the code.
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Drawbacks of the Algorithm

Constructing and modifying interference 
graphs is  very costly as interference graphs 
are typically huge.
For example, the combined interference 
graphs of procedures and functions of gcc in 
mid-90’s have approximately 4.6 million 
edges.
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Some modifications

Careful coalescing: Do not coalesce if 
coalescing increases the degree of a node to 
more than the number of registers
Optimistic colouring: When a node needs to 
be spilled, put it into the colouring stack 
instead of spilling it right away

spill it only when it is popped and if there is no 
colour available for it
this could result in colouring graphs that need 
spills using Chaitin’s technique.
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1 2

3

4
5

A 3-colourable graph which is not 
3-coloured by colouring heuristic,
but coloured by optimistic colouring Example

Say, 1 is chosen for spilling. 
Push it onto the stack, and
remove it from the graph. The
remaining graph (2,3,4,5) is
3-colourable. Now, when 1 is
popped from the colouring
stack, there is a colour with
which 1 can be coloured. It
need not be spilled.
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