
Global Register Allocation
 -

Part 2

Y N Srikant
Computer Science and Automation
Indian Institute of Science
Bangalore 560012

NPTEL Course on Compiler Design

Y.N. Srikant 2

Outline

Issues in Global Register Allocation
The Problem
Register Allocation based in Usage Counts
Linear Scan Register allocation
Chaitin’s graph colouring based algorithm

Topics 1,2,3, and part of 4 were covered in part
1 of the lecture.

Y.N. Srikant 3

A Fast Register Allocation Scheme

Linear scan register allocation(Poletto and
Sarkar 1999) uses the notion of a live interval
rather than a live range.
Is relevant for applications where compile
time is important such as in dynamic
compilation and in just-in-time compilers.
Other register allocation schemes based on
raph colouring are slow and are not suitable
for JIT and dynamic compilers

Y.N. Srikant 4

Linear Scan Register Allocation

Assume that there is some numbering of the
instructions in the intermediate form
An interval [i,j] is a live interval for variable v
if there is no instruction with number j’>j such
that v is live at j’ and no instruction with
number i’<i such that v is live at i
This is a conservative approximation of live
ranges: there may be subranges of [i,j] in
which v is not live but these are ignored

Y.N. Srikant 5

Live Interval Example

...
i’:

...
i:

...
j:

...
j’:

...

sequentially
numbered
instructions

} i – j : live interval for variable v

i’ does not exist

j’ does not exist

v not live

v not live

Y.N. Srikant 6

Example

If (cond)
then A=
else B=

X: if (cond)
then =A
else = B

If (cond)

A= B=

If (cond)

=A =B

T F

F

LIVE INTERVAL FOR A

A NOT LIVE HERE

Y.N. Srikant 7

Live Intervals

Given an order for pseudo-instructions and
live variable information, live intervals can be
computed easily with one pass through the
intermediate representation.
Interference among live intervals is assumed
if they overlap.
Number of overlapping intervals changes
only at start and end points of an interval.

Y.N. Srikant 8

The Data Structures

Live intervals are stored in the sorted order of
increasing start point.
At each point of the program, the algorithm
maintains a list (active list) of live intervals
that overlap the current point and that have
been placed in registers.
active list is kept in the order of increasing
end point.

Y.N. Srikant 9

i1 i2 i3 i4

i5 i6 i7

i8 i9 i10 i11
A B

Active lists (in order
of increasing end pt)

Active(A)= {i1}
Active(B)={i1,i5}
Active(C)={i8,i5}
Active(D)= {i7,i4,i11}

C

Example

Three registers enough for computation without spills

D

Sorted order of intervals
(according to start point):
i1, i5, i8, i2, i9, i6, i3, i10, i7, i4, i11

Y.N. Srikant 10

The Algorithm (1)

{ active := [];
for each live interval i, in order of increasing

start point do
{ ExpireOldIntervals (i);

if length(active) == R then SpillAtInterval(i);
else { register[i] := a register removed from the

pool of free registers;
add i to active, sorted by increasing end point

}
}

}

Y.N. Srikant 11

The Algorithm (2)

ExpireOldIntervals (i)
{ for each interval j in active, in order of

increasing end point do
{ if endpoint[j] > startpoint[i] then return

else { remove j from active;
add register[j] to pool of free registers;

}
}

}

Y.N. Srikant 12

The Algorithm (3)

SpillAtInterval (i)
{ spill := last interval in active;

if endpoint [spill] > endpoint [i] then
{ register [i] := register [spill];

location [spill] := new stack location;
remove spill from active;
add i to active, sorted by increasing end point;

} else location [i] := new stack location;
}

Y.N. Srikant 13

i1 i2 i3 i4

i5 i6 i7

i8 i9 i10 i11
A B C

Example 1

Three registers enough for computation without spills

D

Sorted order of intervals
(according to start point):
i1, i5, i8, i2, i9, i6, i3, i10, i7, i4, i11

Active lists (in order
of increasing end pt)

Active(A)= {i1}
Active(B)={i1,i5}
Active(C)={i8,i5}
Active(D)= {i7,i4,i11}

Y.N. Srikant 14

Example 2
A

B

C

D

E

1 2 3 4 5

1,2 : give A,B register
3: Spill C since endpoint[C] > endpoint [B]

4: A expires, give D register
5: B expires, E gets register

2 registers
available

Y.N. Srikant 15

Example 3
A

B

C

D

E

1 2 3 4 5

1,2 : give A,B register
3: Spill B since endpoint[B] > endpoint [C]

give register to C

4: A expires, give D register
5: C expires, E gets register

2 registers
available

Y.N. Srikant 16

Complexity of the Linear Scan
Algorithm

If V is the number of live intervals and R the number
of available physical registers, then if a balanced
binary tree is used for storing the active intervals,
complexity is O(V log R).
Empirical results reported in literature indicate that
linear scan is significantly faster than graph
colouring algorithms and code emitted is at most
10% slower than that generated by an aggressive
graph colouring algorithm.

Y.N. Srikant 17

Chaitin’s

Formulation of the
Register Allocation Problem

A graph colouring formulation on the
interference graph
Nodes in the graph represent live ranges of
variables or entities called webs
An edge connects two live ranges that interfere
or conflict with one another
Usually both adjacency matrix and adjacency
lists used to represent the graph.

Y.N. Srikant 18

Chaitin’s

Formulation of the
Register Allocation Problem

Assign colours to the nodes such that two
nodes connected by an edge are not assigned
the same colour

The number of colours available is the number
of registers available on the machine
A k-colouring of the interference graph is
mapped into an allocation with k registers

Y.N. Srikant 19

Example

Two colourable Three colourable

Y.N. Srikant 20

Idea behind Chaitin’s

Algorithm

Choose an arbitrary node of degree less than k and
put it on the stack
Remove that vertex and all its edges from the stack

This may decrease the degree of some other nodes and
cause some more nodes to have degree less than k

At some point, if all vertices have degree greater
than or equal to k, some node has to be spilled
If no vertex needs to be spilled, successively pop
vertices off stack and colour them in lowest colour
not used by neighbour.

Y.N. Srikant 21

Simple example –

Given Graph

2

3

4 51

STACK

3 REGISTERS

Y.N. Srikant 22

Simple Example –

Delete Node 1

STACK
3 REGISTERS

2

3

4 51

2

1

Y.N. Srikant 23

Simple Example –

Delete Node 2

STACK
3 REGISTERS

2

3

4 51

1
2

Y.N. Srikant 24

Simple Example –

Delete Node 4

STACK

3 REGISTERS

2

3

4 51

1
2
4

Y.N. Srikant 25

Simple Example –

Delete Nodes 3

STACK
3 REGISTERS

2

3

4 51

1
2
4
3

Y.N. Srikant 26

Simple Example –

Delete Nodes 5

STACK
3 REGISTERS

2

3

4 51

1
2
4
3
5

Y.N. Srikant 27

Simple Example –

Colour

Node 5

STACK

COLOURS

5

3 REGISTERS

1
2
4
3

Y.N. Srikant 28

Simple Example –

Colour

Node 3

STACK

COLOURS

5

3

3 REGISTERS

1
2
4

Y.N. Srikant 29

Simple Example –

Colour

Node 4

STACK

COLOURS

5

3

4

3 REGISTERS

1
2

Y.N. Srikant 30

Simple Example –

Colour

Node 2

STACK

COLOURS

5

3

4

2

3 REGISTERS

1

Y.N. Srikant 31

Simple Example –

Colour

Node 1

STACK

COLOURS

5

3

2

1 4

3 REGISTERS

Y.N. Srikant 32

Steps in Chaitin’s

Algorithm

Identify units for allocation (sometimes called
renumbering)
Build the interference graph
Coalesce by removing unnecessary move or
copy instructions
Colour the graph, thereby selecting registers
Compute spill costs, simplify and add spill
code till graph is colourable

Y.N. Srikant 33

The Chaitin

Framework

RENUMBER BUILD COALESCE SIMPLIFY

SPILL CODE

SPILL COST SELECT

Y.N. Srikant 34

An Example

Original code

x= 2
y = 4
w = x+ y
z = x+1
u = x*y
x= z*2

Code with symbolic registers

1. S1=2; (lv of S1: 1-5)
2. S2=4; (lv of S2: 2-5)
3. S3=s1+s2; (lv of S3: 3-4)
4. S4=s1+1; (lv of S4: 4-6)
5. S5=s1*s2; (lv of S5: 5-6)
6. S6=s4*2; (lv of S6: 6- ...)

Y.N. Srikant 35

s5
s1s3 r3

s6 s2 s4
r1 r2

INTERFERENCE GRAPH
HERE ASSUME VARIABLE Z (s4) CANNOT OCCUPY r1

Y.N. Srikant 36

Example(continued)

Final register allocated code

r1 = 2
r2= 4
r3= r1+r2
r3= r1+1
r1= r1 *r2
r2= r3+r2

Three registers are
sufficient for no spills

Y.N. Srikant 37

Renumbering -

Webs

The definition points and the use points for each
variable v are assumed to be known
Each definition with its set of uses for v is a du-
chain
A web is a maximal union of du-chains such that,
for each definition d and use u, either u is in the
du-chain of d, or there exists a sequence
d =d1 ,u1 ,d2 ,u2 ,…, dn ,un such that for each i, ui
is in the du-chains of both di and di+1 .

Y.N. Srikant 38

Renumbering -

Webs

Each web is given a unique symbolic register
Webs arise when variables are redefined
several times in a program
Webs have intersecting du-chains,
intersecting at the points of join in the control
flow graph

Y.N. Srikant 39

Example of Webs

Def y

Use x

Def x

Def y

Use x

Use y
Use x
Def x

Def x
Use y

B2
B1

B3

B4 B5

B6

W1: def x in B2, def x in B3, use x in
B4, Use x in B5
W2: def x in B5, use x in B6
W3: def y in B2, use y in B4
W4: def y in B1, use y in B3

w3 w1

w2 w4

Y.N. Srikant 40

Build Interference Graph

Create a node for each web and for each
physical register in the interference graph
If two distinct webs interfere, that is, a
variable associated with one web is live at a
definition point of another add an edge
between the two webs
If a particular variable cannot reside in a
register, add an edge between all webs
associated with that variable and the register

Y.N. Srikant 41

Copy Subsumption

or Coalescing

Consider a copy instruction: b := e in the program
If the live ranges of b and e do not overlap, then b
and e can be given the same register (colour)

Implied by lack of any edges between b and e in the
interference graph

The copy instruction can then be removed from the
final program
Coalesce by merging b and e into one node that
contains the edges of both nodes

Y.N. Srikant 42

Copy Subsumption

or Coalescing

b = e b = e

l.r of
old b

l.r of
new b

l.r of e

l.r of
old b

l.r of
new b

l.r of e

copy subsumption
is not possible; lr(e)
and lr(new b) interfere

copy subsumption is
possible; lr(e) and lr(new b)
do not interfere

Y.N. Srikant 43

Example of coalescing

c

b

d

e

a

f

c

be

d

a

f

BEFORE AFTER

Copy inst: b:=e

Y.N. Srikant 44

Coalescing

Coalesce all possible copy instructions
Rebuild the graph

may offer further opportunities for coalescing
build-coalesce phase is repeated till no further
coalescing is possible.

Coalescing reduces the size of the
graph and possibly reduces spilling

Y.N. Srikant 45

Simple fact

Suppose the no. of registers available is R.
If a graph G contains a node n with fewer
than R neighbors then removing n and its
edges from G will not affect its R-colourability
If G’ = G-{n} can be coloured with R colours,
then so can G.
After colouring G’, just assign to n, a colour
different from its R-1 neighbours.

Y.N. Srikant 46

Simplification

If a node n in the interference graph has
degree less than R, remove n and all its
edges from the graph and place n on a
colouring stack.
When no more such nodes are removable
then we need to spill a node.
Spilling a variable x implies

loading x into a register at every use of x
storing x from register into memory at every
definition of x

Y.N. Srikant 47

Spilling Cost

The node to be spilled is decided on the basis of a
spill cost for the live range represented by the node.
Chaitin’s estimate of spill cost of a live range v

cost(v) =

where c is the cost of the op and d, the loop nesting depth.
10 in the eqn above approximates the no. of iterations of
any loop
The node to be spilled is the one with MIN(cost(v)/deg(v))

all load or store
operations in
a live range v

*10dc∑

Y.N. Srikant 48

Spilling Heuristics
Multiple heuristic functions are available for making spill
decisions (cost(v) as before)

1. h0 (v) = cost(v)/degree(v) : Chaitin’s heuristic
2. h1 (v) = cost(v)/[degree(v)]2
3. h2 (v) = cost(v)/[area(v)*degree(v)]
4. h3 (v) = cost(v)/[area(v)*(degree(v))2]

where area(v) =

width(v,I) is the number of live ranges overlapping with
instruction I and depth(v,I) is the depth of loop nesting of I in v

(,)

all instructions I
in the live range v

(,) *5depth v Iwidth v I∑

Y.N. Srikant 49

Spilling Heuristics

area(v) represents the global contribution by v to
register pressure, a measure of the need for
registers at a point
Spilling a live range with high area releases
register pressure; i.e., releases a register when it is
most needed
Choose v with MIN(hi(v)), as the candidate to spill,
if hi is the heuristic chosen
It is possible to use different heuristics at different
times

Y.N. Srikant 50

Here R = 3 and the graph is 3-colourable
No spilling is necessary

Example

Y.N. Srikant 51

1 2

3

4
5

A 3-colourable graph which is not
3-coloured by colouring heuristic

Example

Y.N. Srikant 52

Spilling a Node
To spill a node we remove it from the graph and
represent the effect of spilling as follows (It cannot
just be removed from the graph).

Reload the spilled object at each use and store it in
memory at each definition point
This creates new webs with small live ranges but which will
need registers.

After all spill decisions are made, insert spill code,
rebuild the interference graph and then repeat the
attempt to colour.
When simplification yields an empty graph then
select colours, that is, registers

Y.N. Srikant 53

Effect of Spilling

Def y

Use x

Def x

Def y

Use x

Use y
Use x
Def x

Def x
Use y

B2
B1

B3

B4 B5

B6

W1: def x in B2, def x in B3, use x in
B4, Use x in B5
W2: def x in B5, use x in B6
W3: def y in B2, use y in B4
W4: def y in B1, use y in B3

w3 w1

w2 w4

x is spilled in
web W1

Y.N. Srikant 54

Effect of Spilling

Def x
tmp=x
Def y

x = tmp
Use x
Use y

x = tmp
Use x
Def x

Def x
tmp =x
Use y

Use x

Def y

B2

B4 B5

B6

B1

B3

w4

w6

w8 w5

w1 w2

w3

w7

Interference Graph

W1

W2

W3

W4

W5

W6 W7

W8 (tmp):
B2, B3, B4, B5

Y.N. Srikant 55

Colouring

the Graph(selection)

Repeat
V= pop(stack).
Colours_used(v)= colours used by neighbours of V.
Colours_free(v)=all colours - Colours_used(v).
Colour (V) = any colour in Colours_free(v).
Until stack is empty

Convert the colour assigned to a symbolic register to
the corresponding real registers name in the code.

Y.N. Srikant 56

Drawbacks of the Algorithm

Constructing and modifying interference
graphs is very costly as interference graphs
are typically huge.
For example, the combined interference
graphs of procedures and functions of gcc in
mid-90’s have approximately 4.6 million
edges.

Y.N. Srikant 57

Some modifications

Careful coalescing: Do not coalesce if
coalescing increases the degree of a node to
more than the number of registers
Optimistic colouring: When a node needs to
be spilled, put it into the colouring stack
instead of spilling it right away

spill it only when it is popped and if there is no
colour available for it
this could result in colouring graphs that need
spills using Chaitin’s technique.

Y.N. Srikant 58

1 2

3

4
5

A 3-colourable graph which is not
3-coloured by colouring heuristic,
but coloured by optimistic colouring Example

Say, 1 is chosen for spilling.
Push it onto the stack, and
remove it from the graph. The
remaining graph (2,3,4,5) is
3-colourable. Now, when 1 is
popped from the colouring
stack, there is a colour with
which 1 can be coloured. It
need not be spilled.

	Global Register Allocation�- Part 2�
	Outline
	A Fast Register Allocation Scheme
	Linear Scan Register Allocation
	Live Interval Example
	Example
	Live Intervals
	The Data Structures
	Slide Number 9
	The Algorithm (1)
	The Algorithm (2)
	The Algorithm (3)
	Slide Number 13
	Example 2
	Example 3
	Complexity of the Linear Scan Algorithm
	Chaitin’s Formulation of the �Register Allocation Problem
	Chaitin’s Formulation of the �Register Allocation Problem
	Example
	Idea behind Chaitin’s Algorithm
	Simple example – Given Graph
	Simple Example – Delete Node 1
	Simple Example – Delete Node 2
	Simple Example – Delete Node 4
	Simple Example – Delete Nodes 3
	Simple Example – Delete Nodes 5
	Simple Example – Colour Node 5
	Simple Example – Colour Node 3
	Simple Example – Colour Node 4
	Simple Example – Colour Node 2
	Simple Example – Colour Node 1
	Steps in Chaitin’s Algorithm
	The Chaitin Framework
	An Example
	Slide Number 35
	Example(continued)�
	Renumbering - Webs
	Renumbering - Webs
	Example of Webs
	Build Interference Graph
	Copy Subsumption or Coalescing
	Copy Subsumption or Coalescing
	Example of coalescing
	Coalescing�
	Simple fact�
	Simplification
	Spilling Cost
	Spilling Heuristics
	Spilling Heuristics
	Slide Number 50
	Slide Number 51
	Spilling a Node
	Effect of Spilling
	Effect of Spilling�
	Colouring the Graph(selection)
	Drawbacks of the Algorithm
	Some modifications
	Slide Number 58

