
Global Register Allocation
 -

Part 3

Y N Srikant
Computer Science and Automation
Indian Institute of Science
Bangalore 560012

NPTEL Course on Compiler Design

Y.N. Srikant 2

Outline

Issues in Global Register Allocation
The Problem
Register Allocation based in Usage Counts
Linear Scan Register allocation
Chaitin’s graph colouring based algorithm

Topics 1,2,3,4, and part of 5 were covered in
part 1 of the lecture.

Y.N. Srikant 3

The Chaitin

Framework

RENUMBER BUILD COALESCE SIMPLIFY

SPILL CODE

SPILL COST SELECT

Y.N. Srikant 4

Simplification

If a node n in the interference graph has
degree less than R, remove n and all its
edges from the graph and place n on a
colouring stack.
When no more such nodes are removable
then we need to spill a node.
Spilling a variable x implies

loading x into a register at every use of x
storing x from register into memory at every
definition of x

Y.N. Srikant 5

Spilling Cost

The node to be spilled is decided on the basis of a
spill cost for the live range represented by the node.
Chaitin’s estimate of spill cost of a live range v

cost(v) =

where c is the cost of the op and d, the loop nesting depth.
10 in the eqn above approximates the no. of iterations of
any loop
The node to be spilled is the one with MIN(cost(v)/deg(v))

all load or store
operations in
a live range v

*10dc∑

Y.N. Srikant 6

Spilling Heuristics
Multiple heuristic functions are available for making spill
decisions (cost(v) as before)

1. h0 (v) = cost(v)/degree(v) : Chaitin’s heuristic
2. h1 (v) = cost(v)/[degree(v)]2
3. h2 (v) = cost(v)/[area(v)*degree(v)]
4. h3 (v) = cost(v)/[area(v)*(degree(v))2]

where area(v) =

width(v,I) is the number of live ranges overlapping with
instruction I and depth(v,I) is the depth of loop nesting of I in v

(,)

all instructions I
in the live range v

(,) *5depth v Iwidth v I∑

Y.N. Srikant 7

Spilling Heuristics

area(v) represents the global contribution by v to
register pressure, a measure of the need for
registers at a point
Spilling a live range with high area releases
register pressure; i.e., releases a register when it is
most needed
Choose v with MIN(hi(v)), as the candidate to spill,
if hi is the heuristic chosen
It is possible to use different heuristics at different
times

Y.N. Srikant 8

Here R = 3 and the graph is 3-colourable
No spilling is necessary

Example

Y.N. Srikant 9

1 2

3

4
5

A 3-colourable graph which is not
3-coloured by colouring heuristic

Example

Y.N. Srikant 10

Spilling a Node
To spill a node we remove it from the graph and
represent the effect of spilling as follows (It cannot
just be removed from the graph).

Reload the spilled object at each use and store it in
memory at each definition point
This creates new webs with small live ranges but which will
need registers.

After all spill decisions are made, insert spill code,
rebuild the interference graph and then repeat the
attempt to colour.
When simplification yields an empty graph then
select colours, that is, registers

Y.N. Srikant 11

Effect of Spilling

Def y

Use x

Def x

Def y

Use x

Use y
Use x
Def x

Def x
Use y

B2
B1

B3

B4 B5

B6

W1: def x in B2, def x in B3, use x in
B4, Use x in B5
W2: def x in B5, use x in B6
W3: def y in B2, use y in B4
W4: def y in B1, use y in B3

w3 w1

w2 w4

x is spilled in
web W1

Y.N. Srikant 12

Effect of Spilling

Def x
tmp=x
Def y

x = tmp
Use x
Use y

x = tmp
Use x
Def x

Def x
tmp =x
Use y

Use x

Def y

B2

B4 B5

B6

B1

B3

w4

w6

w8 w5

w1 w2

w3

w7

Interference Graph

W1

W2

W3

W4

W5

W6 W7

W8 (tmp):
B2, B3, B4, B5

Y.N. Srikant 13

Colouring

the Graph(selection)

Repeat
V= pop(stack).
Colours_used(v)= colours used by neighbours of V.
Colours_free(v)=all colours - Colours_used(v).
Colour (V) = any colour in Colours_free(v).
Until stack is empty

Convert the colour assigned to a symbolic register to
the corresponding real registers name in the code.

Y.N. Srikant 14

A Complete Example

1. t1 = 202
2. i = 1
3. L1: t2 = i>100
4. if t2 goto L2
5. t1 = t1-2
6. t3 = addr(a)
7. t4 = t3 - 4
8. t5 = 4*i
9. t6 = t4 + t5
10. *t6 = t1
11. i = i+1
12. goto L1
13. L2:

variable live range
t1 1-10
i 2-11

t2 3-4
t3 6-7
t4 7-9
t5 8-9
t6 9-10

Y.N. Srikant 15

A Complete Example

variable live range
t1 1-10
i 2-11

t2 3-4
t3 6-7
t4 7-9
t5 8-9
t6 9-10

t1 i

t2 t3

t4

t5t6

Y.N. Srikant 16

A Complete Example

t1 i

t2 t3

t4

t5t6
Assume 3 registers. Nodes t6,t2,
and t3 are first pushed onto a
stack during reduction.

t1 i

t4

t5

This graph cannot be reduced
further. Spilling is necessary.

Y.N. Srikant 17

A Complete Example

t1 i

t4

t5

Node V Cost(v) deg(v) h0 (v)
t1 31 3 10
i 41 3 14

t4 20 3 7
t5 20 3 7

t1: 1+(1+1+1)*10 = 31
i : 1+(1+1+1+1)*10 = 41
t4: (1+1)*10 = 20
t5: (1+1)*10 = 20
t5 will be spilled. Then the
graph can be coloured.

1. t1 = 202
2. i = 1
3. L1: t2 = i>100
4. if t2 goto L2
5. t1 = t1-2
6. t3 = addr(a)
7. t4 = t3 - 4
8. t5 = 4*i
9. t6 = t4 + t5
10. *t6 = t1
11. i = i+1
12. goto L1
13. L2:

Y.N. Srikant 18

A Complete Example

t1 i

t4

i
t1
t4
t3
t2
t6

t1 i

t2 t3

t4

t5t6

spilled

R1

R3

R3

R3

R3

R2

1. R1 = 202
2. R2 = 1
3. L1: R3 = i>100
4. if R3 goto L2
5. R1 = R1 - 2
6. R3 = addr(a)
7. R3 = R3 - 4
8. t5 = 4*R2
9. R3 = R3 + t5
10. *R3 = R1
11. R2 = R2+1
12. goto L1
13. L2:

t5: spilled node, will be provided with a temporary register during code generation

Y.N. Srikant 19

Drawbacks of the Algorithm

Constructing and modifying interference
graphs is very costly as interference graphs
are typically huge.
For example, the combined interference
graphs of procedures and functions of gcc in
mid-90’s have approximately 4.6 million
edges.

Y.N. Srikant 20

Some modifications

Careful coalescing: Do not coalesce if
coalescing increases the degree of a node to
more than the number of registers
Optimistic colouring: When a node needs to
be spilled, put it into the colouring stack
instead of spilling it right away

spill it only when it is popped and if there is no
colour available for it
this could result in colouring graphs that need
spills using Chaitin’s technique.

Y.N. Srikant 21

1 2

3

4
5

A 3-colourable graph which is not
3-coloured by colouring heuristic,
but coloured by optimistic colouring Example

Say, 1 is chosen for spilling.
Push it onto the stack, and
remove it from the graph. The
remaining graph (2,3,4,5) is
3-colourable. Now, when 1 is
popped from the colouring
stack, there is a colour with
which 1 can be coloured. It
need not be spilled.

	Global Register Allocation�- Part 3�
	Outline
	The Chaitin Framework
	Simplification
	Spilling Cost
	Spilling Heuristics
	Spilling Heuristics
	Slide Number 8
	Slide Number 9
	Spilling a Node
	Effect of Spilling
	Effect of Spilling�
	Colouring the Graph(selection)
	A Complete Example
	A Complete Example
	A Complete Example
	A Complete Example
	A Complete Example
	Drawbacks of the Algorithm
	Some modifications
	Slide Number 21

