
Implementing
Object-Oriented Languages

 -

Part 2
Y.N. Srikant
Computer Science and Automation
Indian Institute of Science
Bangalore 560 012

NPTEL Course on Compiler Design

Y.N. Srikant 2

Outline of the Lecture

Language requirements
Mapping names to methods
Variable name visibility
Code generation for methods
Simple optimizations
Parts of this lecture are based on the book,
“Engineering a Compiler”, by Keith Cooper and
Linda Torczon, Morgan Kaufmann, 2004, sections
6.3.3 and 7.10.

Topics 1,2,3, and, 4 were covered in Part 1 of the lecture.

Y.N. Srikant 3

Example of Class Hierarchy with
 Complete Method Tables

n: 0

fee

fum

n: 1

fee

fum

n: 2

fee

fum

x: 5

x: 5

y: 3

z:
foe foe

fie

x: 2

y: 0

z:

y: 3

fum
...

fee
...

foe
...

fee
...

fee
...

fie
...

one
two

three
c

a
b

object

class

method

Y.N. Srikant 4

Implementing Multiple Inheritance

%new_
pointer

%new_
pointer

%new_
pointer

fum
...

foe
...

fee
...

fie
...

class a class b

class c

Y.N. Srikant 5

Implementing Multiple Inheritance

class
pointer

a data
members

b data
members

c data
members

object layout
for objects
of class c

class
pointer

a data
members

object layout
for objects
of class a

class
pointer

b data
members

object layout
for objects
of class b

Y.N. Srikant 6

Implementing Multiple Inheritance
 -

Fixed Offset Method

Record the constant offset in the method
table along with the methods

Offsets for this example are as follows:
(c) fee : 0, (a) fie: 0, (b) foe : 8, (b) fum : 8,
assuming that instance variables of class a take 8
bytes

Generated code adds this offset to the
receiver’s pointer address before invoking the
method

class
pointer

a data
members

b data
members

c data
members

object layout
for objects
of class c

Y.N. Srikant 7

Implementing Multiple Inheritance

%new_
pointer

%new_
pointer

%new_
pointer

fum
...

foe
...

fee
...

fie
...

class a class b

class c

class
pointer

a data
members

b data
members

c data
members

object layout
for objects
of class c

data pointer for c.foe()

Y.N. Srikant 8

Implementing Multiple Inheritance
 -

Trampoline Functions
Create trampoline functions for each method
of class b

A function that increments this (pointer to
receiver) by the required offset and then invokes
the actual method from b.
On return, it decrements the receiver pointer, if it
was passed by reference

Y.N. Srikant 9

Implementing Multiple Inheritance

Trampolines appear to be more expensive
than the fixed offset method, but not really so

They are used only for calls to methods inherited
from b

In the other method, offset (possibly 0) was added for all
calls

Method inlining will make it better than option 1,
since the offset is a constant

Finally, a duplicate class pointer (pointing to
class c) may need to be inserted just before
instance variables of b (for convenience)

Y.N. Srikant 10

Fast Type Inclusion Tests –

The need

If class Y is a subclass of class X
X a = new Y(); //a is of type base class of Y, okay
// other code omitted

Y b = a; // a holds a value of type Y
The above assignment is valid, but the following is not
X a = new X();
// other code omitted

Y b = a; // a holds a value of type X
Runtime type checking to verify the above is
needed
Java has an explicit instanceof test that requires a
runtime type checking

Y.N. Srikant 11

Fast Type Inclusion Tests –

Searching the
Class Hierarchy Graph

Store the class hierarchy graph in memory
Search and check if one node is an ancestor
of another
Traversal is straight forward to implement
only for single inheritance
Cumbersome and slow for multiple
inheritance
Execution time increases with depth of class
hierarchy

Y.N. Srikant 12

Class Hierarchy Graph -

Example

A

B C

D E

G

F

Single
inheritance A

B C

D E

G

F

HMultiple
inheritance

Y.N. Srikant 13

Fast Type Inclusion Tests –

Binary Matrix

0 1 0 0 1

0 0 1 0 1

1 0 0 1 0

1 0 0 0 1

0 0 1 0 0

C1 C2 C3 C4 C5

C1

C2

C3

C4

C5

Class types

Class types

BM [Ci, Cj] = 1, iff

Ci

is a subclass of Cj

Tests are
efficient, but
Matrix will be
large in practice.
The matrix can
be compacted,
but this
increases
access time.
This can handle
multiple
inheritance also.

Y.N. Srikant 14

Relative (Schubert’s) Numbering

A

B C

D E

G

F

{3,3}

{1,1}
{5,5}

{3,4}

{3,6}{1,2}

{1,7}

{ la

, ra

} for a node a

:
ra

is the ordinal number of the
node a

in a postorder

traversal

 of the tree. Let ◄ denote
“subtype of”

relation. All
descendants of a node are
subtypes of that node.
◄ is reflexive and transitive.
la

= min { rp

| p is a descendant
of

a }.
Now,

a

◄ b, iff

lb

<

ra

<

rb.

This test is very fast and is O(1).
Works only for single inheritance.
Extensions to handle multiple
inheritance are complex.

Y.N. Srikant 15

Devirtualization

–

Class Hierarchy Analysis

Reduces the overhead of virtual method
invocation
Statically determines which virtual method
calls resolve to a single method
Such calls are either inlined or replaced by
static calls
Builds a class hierarchy and a call graph

Y.N. Srikant 16

Class Hierarchy Analysis
class X extends object {

void f1() {. . .}
void f2() {. . .}

}
class Y extends X {

void f1() {. . .}
}
class Z extends X {

void f1() {. . .}
public static void main(...) {

X a = new X(); Y b = new Y();
Z c = new Z();
if (...) a = c;
// other code
a.f1(); b.f1(); b.f2();

}
}

object

X
f1(), f2()

Y
f1()

Z
f1()

Z.main()
a.f1() b.f1() b.f2()

X.f1 Y.f1 Z.f1 X.f2

	Implementing �Object-Oriented Languages�- Part 2
	Outline of the Lecture
	Example of Class Hierarchy with�Complete Method Tables
	Implementing Multiple Inheritance
	Implementing Multiple Inheritance
	Implementing Multiple Inheritance�- Fixed Offset Method
	Implementing Multiple Inheritance
	Implementing Multiple Inheritance�- Trampoline Functions
	Implementing Multiple Inheritance
	Fast Type Inclusion Tests – The need
	Fast Type Inclusion Tests – Searching the Class Hierarchy Graph
	Class Hierarchy Graph - Example
	Fast Type Inclusion Tests – Binary Matrix
	Relative (Schubert’s) Numbering
	Devirtualization – Class Hierarchy Analysis
	Class Hierarchy Analysis

