Control Flow Analysis - Part 1

Y.N. Srikant

Department of Computer Science
Indian Institute of Science
Bangalore 560 012

NPTEL Course on Compiler Design

Y.N. Srikant Control Flow Analysis

Outline of the Lecture

@ Why control flow analysis?

@ Dominators and natural loops

@ Intervals and reducibility

@ Ty — T, transformations and graph reduction
@ Regions

Y.N. Srikant Control Flow Analysis

Why Control-Flow Analysis?

@ Control-flow analysis (CFA) helps us to understand the
structure of control-flow graphs (CFG)

@ To determine the loop structure of CFGs

@ Formulation of conditions for code motion use dominator
information, which is obtained by CFA

@ Construction of the static single assignment form (SSA)
requires dominance frontier information from CFA

@ ltis possible to use interval structure obtained from CFA to
carry out data-flow analysis

@ Finding Control dependence, which is needed in
parallelization, requires CFA

Y.N. Srikant Control Flow Analysis

Dominators

@ We say that a node d in a flow graph dominates node n,
written d dom n, if every path from the initial node of the
flow graph to n goes through d

@ Initial node is the root, and each node dominates only its
descendents in the tree (including itself)

@ The node x strictly dominates y, if x dominates y and
X#Yy

@ x is the immediate dominator of y (denoted idom(y)), if x
is the closest strict dominator of y

@ A dominator tree shows all the immediate dominator
relationships

@ Principle of the dominator algorithm

o If py,po, ..., Pk, are all the predecessors of n, and d # n,
then d dom n, iff d dom p; for each i

Y.N. Srikant Control Flow Analysis

An Algorithm for finding Dominators

@ D(n) = OUT|n] for all nin N (the set of nodes in the flow
graph), after the following algorithm terminates
@ {/* ny = initial node; N = set of all nodes; */
OUT[no] = {no};
fornin N —{ny} do OUT[n] = N;
while (changes to any OUT[n] or IN[n] occur) do
fornin N —{ny} do

IN[n] = N OUTIPY;

P a predecessor of n

OUT[n] = {n}UINI[n]

Y.N. Srikant Control Flow Analysis

Dominator Example

For determining
dominators, assume

visit order of nodes in
the CFG to be
BO,...B8

BS[even(n) [printi]54

\ \ B8

n=3"n+1|Bs Stop

B5

init: OUT[BA,...,B8] = {BO,...,B8}, OUT[BO] = {B0}
iter 1: IN[B1] = OUT[BO] = {B0}, OUT[BA] = {B0,B1}
iter 2: IN[B2] =OUT[B1] N QUT[B7] = {B0,B1} , OUT[BZ] = {B0,B1,B2}
iter 3: IN[B3] = {B0,B1,B2}, OUT[B3] = {B0,B1,B2,B3}
IN[B4] = {B0,B1,B2}, OUT[B4] = {B0,B1,B2,B4}
iter 4: IN[BS] = {B0,B1,B2,B3} = IN[B6], OUT[B5] = {B0,B1,B2,B3,B5}
OUT[B6] = {BO0,B1,B2,B3,B6}, OUT[BS] = {B0,B1,B2,B4,B8}
iter 5: IN[B7] = OUT[BS5] N OUT[B6] = {B0,B1,82,B3}
OUT[B7] = {B0,B1,B2,B3,B7}

Y.N. Srikant Control Flow Analysis

Dominators, Back Edges, and Natural Loops

Dominator Tree

Adapted from the
“Dragon Book”,
A-WW, 1986

Flow Graph

Y.N. Srikant Control Flow Analysis

Dominators, Back Edges, and Natural Loops

Dominator Tree

Adapted from the
“Dragon Book”,
A-WW, 1986

Flow Graph

Y.N. Srikant Control Flow Analysis

Dominators and Natural Loops

@ Edges whose heads dominate their tails are called back
edges(a— b: b= head, a= tail)
@ Given a back edge n — d
e The natural loop of the edge is d plus the set of nodes that

can reach n without going through d
e d is the header of the loop
@ A single entry point to the loop that dominates all nodes in
the loop
@ Atleast one path back to the header exists (so that the loop
can be iterated)

Y.N. Srikant Control Flow Analysis

