Data-flow Analysis - Part 2

Y.N. Srikant

Department of Computer Science Indian Institute of Science Bangalore 560 012

NPTEL Course on Compiler Design

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Data-flow analysis

- These are techniques that derive information about the flow of data along program execution paths
- An *execution path* (or *path*) from point *p*₁ to point *p_n* is a sequence of points *p*₁, *p*₂, ..., *p_n* such that for each *i* = 1, 2, ..., *n* 1, either
 - p_i is the point immediately preceding a statement and p_{i+1} is the point immediately following that same statement, or
 - 2 p_i is the end of some block and p_{i+1} is the beginning of a successor block
- In general, there is an infinite number of paths through a program and there is no bound on the length of a path
- Program analyses summarize all possible program states that can occur at a point in the program with a finite set of facts
- No analysis is necessarily a perfect representation of the state

Program debugging

• Which are the definitions (of variables) that *may* reach a program point? These are the *reaching definitions*

Program optimizations

- Constant folding
- Copy propagation
- Common sub-expression elimination etc.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- A *data-flow value* for a program point represents an abstraction of the set of all possible program states that can be observed for that point
- The set of all possible data-flow values is the *domain* for the application under consideration
 - Example: for the *reaching definitions* problem, the domain of data-flow values is the set of all subsets of of definitions in the program
 - A particular data-flow value is a set of definitions
- IN[s] and OUT[s]: data-flow values before and after each statement s
- The data-flow problem is to find a solution to a set of constraints on IN[s] and OUT[s], for all statements s

イロト 不得 とくほ とくほ とうほ

Data-Flow Analysis Schema (2)

- Two kinds of constraints
 - Those based on the semantics of statements (*transfer functions*)
 - Those based on flow of control
- A DFA schema consists of
 - A control-flow graph
 - A direction of data-flow (forward or backward)
 - A set of data-flow values
 - A confluence operator (normally set union or intersection)
 - Transfer functions for each block
- We always compute *safe* estimates of data-flow values
- A decision or estimate is *safe* or *conservative*, if it never leads to a change in what the program computes (after the change)
- These safe values may be either subsets or supersets of actual values, based on the application

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

The Reaching Definitions Problem

- We *kill* a definition of a variable *a*, if between two points along the path, there is an assignment to *a*
- A definition *d* reaches a point *p*, if there is a path from the point immediately following *d* to *p*, such that *d* is not *killed* along that path
- Unambiguous and ambiguous definitions of a variable

```
a := b+c
```

(unambiguous definition of 'a')

... *p := d

(ambiguous definition of 'a', if 'p' may point to variables other than 'a' as well; hence does not kill the above definition of 'a')

```
a := k-m
(unambiguous definition of 'a'; kills the above definition of
'a')
```

The Reaching Definitions Problem(2)

- Sets of definitions constitute the domain of data-flow values
- We compute supersets of definitions as *safe* values
- It is safe to assume that a definition reaches a point, even if it does not.
- In the following example, we assume that both a=2 and a=4 reach the point after the complete if-then-else statement, even though the statement a=4 is not reached by control flow

if (a==b) a=2; else if (a==b) a=4;

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

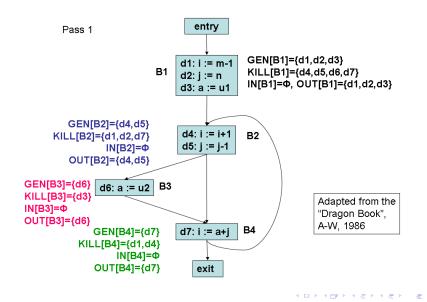
The Reaching Definitions Problem (3)

• The data-flow equations (constraints)

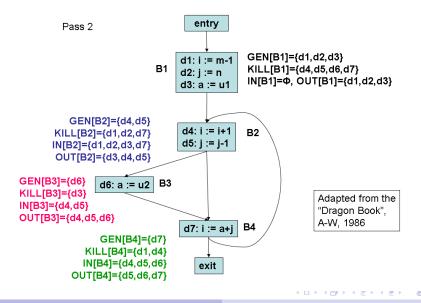
$$IN[B] = \bigcup_{P \text{ is a predecessor of } B} OUT[P]$$
$$OUT[B] = GEN[B] \bigcup (IN[B] - KILL[B])$$
$$IN[B] = \phi, \text{ for all } B (initialization only)$$

- If some definitions reach B₁ (entry), then IN[B₁] is initialized to that set
- Forward flow DFA problem (since OUT[B] is expressed in terms of IN[B]), confluence operator is ∪
- GEN[B] = set of all definitions inside B that are "visible" immediately after the block - downwards exposed definitions
- KILL[B] = union of the definitions in all the basic blocks of the flow graph, that are killed by individual statements in B

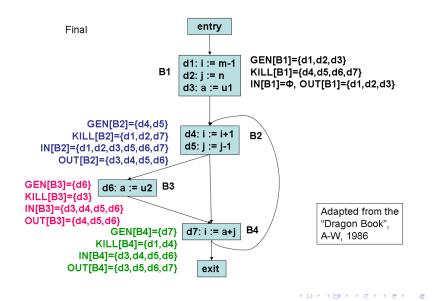
Reaching Definitions Analysis: An Example - Pass 1



Reaching Definitions Analysis: An Example - Pass 2

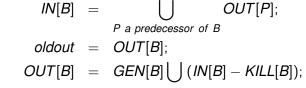


Reaching Definitions Analysis: An Example - Final



An Iterative Algorithm for Computing Reaching Definitions

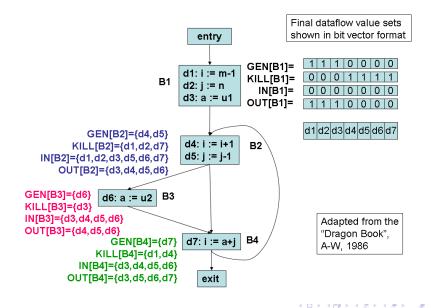
for each block *B* do { $IN[B] = \phi$; OUT[B] = GEN[B]; } change = true; while change do { change = false; for each block *B* do {



if (OUT[B] ≠ oldout) change = true;
GEN, KILL, IN, and OUT are all represented as bit

vectors with one bit for each definition in the flow graph

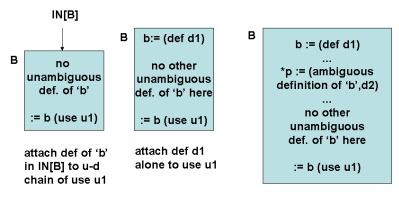
Reaching Definitions: Bit Vector Representation



Use-Definition Chains (u-d chains)

- Reaching definitions may be stored as u-d chains for convenience
- A u-d chain is a list of a use of a variable and all the definitions that reach that use
- u-d chains may be constructed once reaching definitions are computed
- **case 1**: If use *u*1 of a variable *b* in block B is preceded by no unambiguous definition of *b*, then attach all definitions of *b* in *IN*[*B*] to the u-d chain of that use *u*1 of *b*
- **case 2**: If any unambiguous definition of *b* preceeds a use of *b*, then *only that definition* is on the u-d chain of that use of *b*
- case 3: If any ambiguous definitions of *b* precede a use of *b*, then each such definition for which no unambiguous definition of *b* lies between it and the use of *b*, are on the u-d chain for this use of *b*

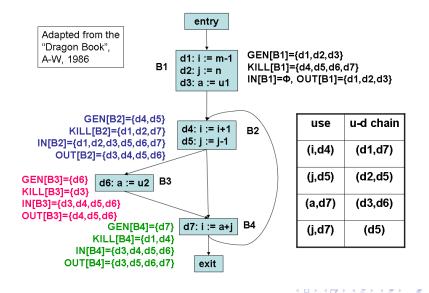
Use-Definition Chain Construction



attach both d1 and d2 to use u1

Three cases while constructing u-d chains from the reaching definitions

Use-Definition Chain Example

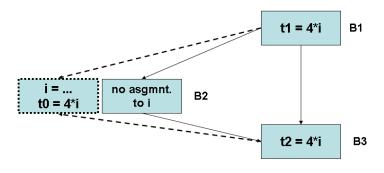


- Sets of expressions constitute the domain of data-flow values
- Forward flow problem
- Confluence operator is ∩
- An expression x + y is available at a point p, if every path (not necessarily cycle-free) from the initial node to p evaluates x + y, and after the last such evaluation, prior to reaching p, there are no subsequent assignments to x or y
- A block kills x + y, if it assigns (or may assign) to x or y and does not subsequently recompute x + y.
- A block generates x + y, if it definitely evaluates x + y, and does not subsequently redefine x or y

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Available Expression Computation(2)

- Useful for global common sub-expression elimination
- 4 * i is a CSE in B3, if it is available at the entry point of B3 i.e., if i is not assigned a new value in B2 or 4 * i is recomputed after i is assigned a new value in B2 (as shown in the dotted box)



Available Expression Computation (3)

The data-flow equations

 $IN[B] = \bigcap_{P \text{ is a predecessor of } B} OUT[P], B \text{ not initial}$ $OUT[B] = e_gen[B] \bigcup (IN[B] - e_kill[B])$ $IN[B1] = \phi$ $IN[B] = U, \text{ for all } B \neq B1 \text{ (initialization only)}$

- B1 is the initial or entry block and is special because nothing is available when the program begins execution
- IN[B1] is always ϕ
- U is the universal set of all expressions
- Initializing IN[B] to ϕ for all $B \neq B1$, is restrictive

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Computing e gen and e kill

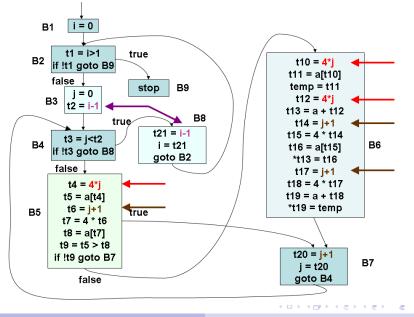
- For statements of the form x = a, step 1 below does not apply
- The set of all expressions appearing as the RHS of assignments in the flow graph is assumed to be available and is represented using a hash table and a bit vector

e_gen[q] = A q • x = y + z p •	Computing e_gen[p] 1. A = A U {y+z} 2. A = A - {all expressions involving x} 3. e_gen[p] = A
e_kill[q] = A q • x = y + z p •	Computing e_kill[p] 1. A = A - {y+z} 2. A = A U {all expressions involving x} 3. e_kill[p] = A

n[p]

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ●

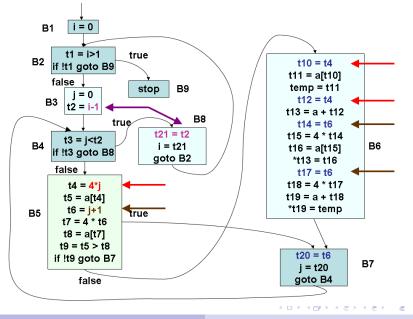
Available Expression Computation - An Example



Y.N. Srikant

Data-flow Analysis

Available Expression Computation - An Example (2)



Y.N. Srikant

Data-flow Analysis

An Iterative Algorithm for Computing Available Expressions

for each block $B \neq B1$ do { $OUT[B] = U - e_kill[B]$; } /* You could also do IN[B] = U;*/ /* In such a case, you must also interchange the order of */ /* IN[B] and OUT[B] equations below */ change = true; while change do { change = false; for each block $B \neq B1$ do {

$$IN[B] = \bigcap_{\substack{P \text{ a predecessor of } B}} OUT[P];$$

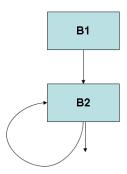
$$oldout = OUT[B];$$

$$OUT[B] = e_gen[B] \bigcup (IN[B] - e_kill[B]);$$

if $(OUT[B] \neq oldout)$ change = true;

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Initializing IN[B] to ϕ for all B can be restrictive



Let e gen[B2] be G and e kill[B2] be K $IN[B2] = OUT[B1] \cap OUT[B2]$ OUT[B2] = G U IN[B2] - KINº[B2]=Φ, OUT¹[B2]=G IN1[B2]=OUT[B1] n G OUT²[B2]=G U ((OUT[B1] **n** G) – K) $= G \cup G = G$ Note that (OUT[B1] **∩** G) is always smaller than G INº[B2]= U, OUT¹[B2]= U - K IN¹[B2]=OUT[B1] ∩ (**U** – K) = OUT[B1] - K OUT²[B2]=G U ((OUT[B1] - K) – K) = G U (OUT[B1] - K)This set OUT[B2] is larger and more intuitive, but still correct

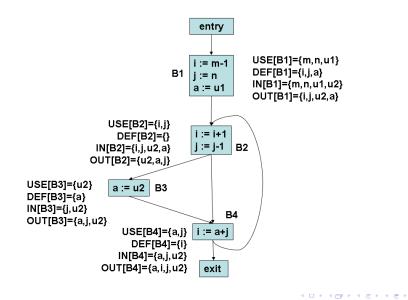
Live Variable Analysis

(

- The variable *x* is *live* at the point *p*, if the value of *x* at *p* could be used along some path in the flow graph, starting at *p*; otherwise, *x* is *dead* at *p*
- Sets of variables constitute the domain of data-flow values
- Backward flow problem, with confluence operator \bigcup
- *IN*[*B*] is the set of variables live at the beginning of *B*
- OUT[B] is the set of variables live just after B
- *DEF*[*B*] is the set of variables definitely assigned values in *B*, prior to any use of that variable in *B*
- *USE*[*B*] is the set of variables whose values may be used in *B* prior to any definition of the variable

$$DUT[B] = \bigcup_{\substack{S \text{ is a successor of } B}} IN[S]$$
$$IN[B] = USE[B] \bigcup (OUT[B] - DEF[B])$$
$$IN[B] = \phi, \text{ for all } B (\text{initialization only})$$

Live Variable Analysis: An Example



2