
Data-flow Analysis - Part 2

Y.N. Srikant

Department of Computer Science
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Compiler Design

Y.N. Srikant Data-flow Analysis



Data-flow analysis

These are techniques that derive information about the
flow of data along program execution paths
An execution path (or path) from point p1 to point pn is a
sequence of points p1,p2, ...,pn such that for each
i = 1,2, ...,n − 1, either

1 pi is the point immediately preceding a statement and pi+1
is the point immediately following that same statement, or

2 pi is the end of some block and pi+1 is the beginning of a
successor block

In general, there is an infinite number of paths through a
program and there is no bound on the length of a path
Program analyses summarize all possible program states
that can occur at a point in the program with a finite set of
facts
No analysis is necessarily a perfect representation of the
state

Y.N. Srikant Data-flow Analysis



Uses of Data-flow Analysis

Program debugging
Which are the definitions (of variables) that may reach a
program point? These are the reaching definitions

Program optimizations
Constant folding
Copy propagation
Common sub-expression elimination etc.

Y.N. Srikant Data-flow Analysis



Data-Flow Analysis Schema

A data-flow value for a program point represents an
abstraction of the set of all possible program states that
can be observed for that point
The set of all possible data-flow values is the domain for
the application under consideration

Example: for the reaching definitions problem, the domain
of data-flow values is the set of all subsets of of definitions
in the program
A particular data-flow value is a set of definitions

IN[s] and OUT [s]: data-flow values before and after each
statement s
The data-flow problem is to find a solution to a set of
constraints on IN[s] and OUT [s], for all statements s

Y.N. Srikant Data-flow Analysis



Data-Flow Analysis Schema (2)

Two kinds of constraints
Those based on the semantics of statements (transfer
functions)
Those based on flow of control

A DFA schema consists of
A control-flow graph
A direction of data-flow (forward or backward)
A set of data-flow values
A confluence operator (normally set union or intersection)
Transfer functions for each block

We always compute safe estimates of data-flow values
A decision or estimate is safe or conservative, if it never
leads to a change in what the program computes (after the
change)
These safe values may be either subsets or supersets of
actual values, based on the application

Y.N. Srikant Data-flow Analysis



The Reaching Definitions Problem

We kill a definition of a variable a, if between two points
along the path, there is an assignment to a
A definition d reaches a point p, if there is a path from the
point immediately following d to p, such that d is not killed
along that path
Unambiguous and ambiguous definitions of a variable

a := b+c
(unambiguous definition of ’a’)

...
*p := d

(ambiguous definition of ’a’, if ’p’ may point to variables
other than ’a’ as well; hence does not kill the above
definition of ’a’)

...
a := k-m

(unambiguous definition of ’a’; kills the above definition of
’a’)

Y.N. Srikant Data-flow Analysis



The Reaching Definitions Problem(2)

Sets of definitions constitute the domain of data-flow values
We compute supersets of definitions as safe values
It is safe to assume that a definition reaches a point, even
if it does not.
In the following example, we assume that both a=2 and
a=4 reach the point after the complete if-then-else
statement, even though the statement a=4 is not reached
by control flow
if (a==b) a=2; else if (a==b) a=4;

Y.N. Srikant Data-flow Analysis



The Reaching Definitions Problem (3)

The data-flow equations (constraints)

IN[B] =
⋃

P is a predecessor of B

OUT [P]

OUT [B] = GEN[B]
⋃

(IN[B]− KILL[B])

IN[B] = φ, for all B (initialization only)

If some definitions reach B1 (entry), then IN[B1] is
initialized to that set
Forward flow DFA problem (since OUT [B] is expressed in
terms of IN[B]), confluence operator is ∪
GEN[B] = set of all definitions inside B that are “visible”
immediately after the block - downwards exposed
definitions
KILL[B] = union of the definitions in all the basic blocks of
the flow graph, that are killed by individual statements in B

Y.N. Srikant Data-flow Analysis



Reaching Definitions Analysis: An Example - Pass 1

Y.N. Srikant Data-flow Analysis



Reaching Definitions Analysis: An Example - Pass 2

Y.N. Srikant Data-flow Analysis



Reaching Definitions Analysis: An Example - Final

Y.N. Srikant Data-flow Analysis



An Iterative Algorithm for Computing Reaching
Definitions

for each block B do { IN[B] = φ; OUT [B] = GEN[B]; }
change = true;
while change do { change = false;

for each block B do {

IN[B] =
⋃

P a predecessor of B

OUT [P];

oldout = OUT [B];

OUT [B] = GEN[B]
⋃

(IN[B]− KILL[B]);

if (OUT [B] 6= oldout) change = true;
}

}

GEN, KILL, IN, and OUT are all represented as bit
vectors with one bit for each definition in the flow graph

Y.N. Srikant Data-flow Analysis



Reaching Definitions: Bit Vector Representation

Y.N. Srikant Data-flow Analysis



Use-Definition Chains (u-d chains)

Reaching definitions may be stored as u-d chains for
convenience
A u-d chain is a list of a use of a variable and all the
definitions that reach that use
u-d chains may be constructed once reaching definitions
are computed
case 1: If use u1 of a variable b in block B is preceded by
no unambiguous definition of b, then attach all definitions
of b in IN[B] to the u-d chain of that use u1 of b
case 2: If any unambiguous definition of b preceeds a use
of b, then only that definition is on the u-d chain of that use
of b
case 3: If any ambiguous definitions of b precede a use of
b, then each such definition for which no unambiguous
definition of b lies between it and the use of b, are on the
u-d chain for this use of b

Y.N. Srikant Data-flow Analysis



Use-Definition Chain Construction

Y.N. Srikant Data-flow Analysis



Use-Definition Chain Example

Y.N. Srikant Data-flow Analysis



Available Expression Computation

Sets of expressions constitute the domain of data-flow
values
Forward flow problem
Confluence operator is ∩
An expression x + y is available at a point p, if every path
(not necessarily cycle-free) from the initial node to p
evaluates x + y , and after the last such evaluation, prior to
reaching p, there are no subsequent assignments to x or y
A block kills x + y , if it assigns (or may assign) to x or y
and does not subsequently recompute x + y .
A block generates x + y , if it definitely evaluates x + y , and
does not subsequently redefine x or y

Y.N. Srikant Data-flow Analysis



Available Expression Computation(2)

Useful for global common sub-expression elimination
4 ∗ i is a CSE in B3, if it is available at the entry point of B3
i.e., if i is not assigned a new value in B2 or 4 ∗ i is
recomputed after i is assigned a new value in B2 (as
shown in the dotted box)

Y.N. Srikant Data-flow Analysis



Available Expression Computation (3)

The data-flow equations

IN[B] =
⋂

P is a predecessor of B

OUT [P], B not initial

OUT [B] = e_gen[B]
⋃

(IN[B]− e_kill[B])

IN[B1] = φ

IN[B] = U, for all B 6= B1 (initialization only)

B1 is the intial or entry block and is special because
nothing is available when the program begins execution
IN[B1] is always φ
U is the universal set of all expressions
Initializing IN[B] to φ for all B 6= B1, is restrictive

Y.N. Srikant Data-flow Analysis



Computing e_gen and e_kill

For statements of the form x = a, step 1 below does not
apply
The set of all expressions appearing as the RHS of
assignments in the flow graph is assumed to be available
and is represented using a hash table and a bit vector

Y.N. Srikant Data-flow Analysis



Available Expression Computation - An Example

Y.N. Srikant Data-flow Analysis



Available Expression Computation - An Example (2)

Y.N. Srikant Data-flow Analysis



An Iterative Algorithm for Computing Available
Expressions

for each block B 6= B1 do {OUT [B] = U − e_kill[B]; }
/* You could also do IN[B] = U;*/
/* In such a case, you must also interchange the order of */
/* IN[B] and OUT [B] equations below */
change = true;
while change do { change = false;

for each block B 6= B1 do {

IN[B] =
⋂

P a predecessor of B

OUT [P];

oldout = OUT [B];

OUT [B] = e_gen[B]
⋃

(IN[B]− e_kill[B]);

if (OUT [B] 6= oldout) change = true;
}

}
Y.N. Srikant Data-flow Analysis



Initializing IN[B] to φ for all B can be restrictive

Y.N. Srikant Data-flow Analysis



Live Variable Analysis

The variable x is live at the point p, if the value of x at p
could be used along some path in the flow graph, starting
at p; otherwise, x is dead at p
Sets of variables constitute the domain of data-flow values
Backward flow problem, with confluence operator

⋃
IN[B] is the set of variables live at the beginning of B
OUT [B] is the set of variables live just after B
DEF [B] is the set of variables definitely assigned values in
B, prior to any use of that variable in B
USE [B] is the set of variables whose values may be used
in B prior to any definition of the variable

OUT [B] =
⋃

S is a successor of B

IN[S]

IN[B] = USE [B]
⋃

(OUT [B]− DEF [B])

IN[B] = φ, for all B (initialization only)

Y.N. Srikant Data-flow Analysis



Live Variable Analysis: An Example

Y.N. Srikant Data-flow Analysis


