Data-flow Analysis - Part 2

Y.N. Srikant

Department of Computer Science
Indian Institute of Science
Bangalore 560 012

NPTEL Course on Compiler Design

Y.N. Srikant Data-flow Analysis

Data-flow analysis

@ These are techniques that derive information about the
flow of data along program execution paths
@ An execution path (or path) from point p; to point p, is a

sequence of points p1, po, ..., Pn such that for each
i=1,2,. — 1, either

Q piis the point immediately preceding a statement and p; 1
is the point immediately following that same statement, or
@ p;is the end of some block and p;, 1 is the beginning of a
successor block
@ In general, there is an infinite number of paths through a
program and there is no bound on the length of a path

@ Program analyses summarize all possible program states
that can occur at a point in the program with a finite set of
facts

@ No analysis is necessarily a perfect representation of the
state

Y.N. Srikant Data-flow Analysis

Uses of Data-flow Analysis

@ Program debugging

@ Which are the definitions (of variables) that may reach a
program point? These are the reaching definitions

@ Program optimizations

e Constant folding
e Copy propagation
@ Common sub-expression elimination etc.

Y.N. Srikant Data-flow Analysis

Data-Flow Analysis Schema

@ A data-flow value for a program point represents an
abstraction of the set of all possible program states that
can be observed for that point

@ The set of all possible data-flow values is the domain for
the application under consideration

e Example: for the reaching definitions problem, the domain
of data-flow values is the set of all subsets of of definitions
in the program

e A particular data-flow value is a set of definitions

@ IN[s] and OUTs|: data-flow values before and after each
statement s

@ The data-flow problem is to find a solution to a set of
constraints on IN[s] and OUT |s], for all statements s

Y.N. Srikant Data-flow Analysis

Data-Flow Analysis Schema (2)

@ Two kinds of constraints
e Those based on the semantics of statements (transfer
functions)
e Those based on flow of control
@ A DFA schema consists of

e A control-flow graph

@ A direction of data-flow (forward or backward)

o A set of data-flow values

e A confluence operator (normally set union or intersection)
e Transfer functions for each block

@ We always compute safe estimates of data-flow values

@ A decision or estimate is safe or conservative, if it never
leads to a change in what the program computes (after the
change)

@ These safe values may be either subsets or supersets of
actual values, based on the application

Y.N. Srikant Data-flow Analysis

The Reaching Definitions Problem

@ We kill a definition of a variable a, if between two points
along the path, there is an assignment to a

@ A definition d reaches a point p, if there is a path from the
point immediately following d to p, such that d is not killed
along that path

@ Unambiguous and ambiguous definitions of a variable

a:=b+c

(unambiguous definition of ’a’)

*p:=d
(ambiguous definition of ’a’, if 'p’ may point to variables
other than 'a’ as well; hence does not kill the above
definition of ’a’)

a:=k-m
(unambiguous definition of ’a’; kills the above definition of
la!)
Y.N. Srikant Data-flow Analysis

The Reaching Definitions Problem(2)

@ Sets of definitions constitute the domain of data-flow values

@ We compute supersets of definitions as safe values

@ |t is safe to assume that a definition reaches a point, even
if it does not.

@ In the following example, we assume that both a=2 and
a=4 reach the point after the complete if-then-else
statement, even though the statement a=4 is not reached

by control flow
if (a==b) a=2; else if (a==b) a=4;

Y.N. Srikant Data-flow Analysis

The Reaching Definitions Problem (3)

@ The data-flow equations (constraints)

IN[B] = U OUT[P]
P is a predecessor of B
OUT[B] = GENIB] U (IN[B] — KILL[B])
IN[B] = ¢,for all B (initialization only)

@ If some definitions reach B; (entry), then IN[B;] is
initialized to that set

@ Forward flow DFA problem (since OUT|[B] is expressed in
terms of IN[B]), confluence operator is U

@ GENIB] = set of all definitions inside B that are “visible”
immediately after the block - downwards exposed
definitions

@ KILL[B] = union of the definitions in all the basic blocks of
the flow graph, that are killed by individual statements in B

Y.N. Srikant Data-flow Analysis

Reaching Definitions Analysis: An Example - Pass 1

Pass 1

d1:i:=m-| GEN[B1I={d1,d2,d3}
Bl |gij:=pn | KILL[BT]={d4,d5,d6,d7}
d3-a-=ul | IN[B1]=®, OUT[B1]={d1,d2,d3}

GEN[B2]={d4,d5}
KILL[B2]={d1,d2,d7} d4:i:=i+1| B2
IN[B2]=¢ ds:j:=j1
OUT[B2]={d4,d5}

GEN[B3]={d6} | 4g: 5 := u2 | B3
KILL[B3]={d3}

= Adapted from the
ICr)\Ilﬁ?]B_:’?—{dG} “Dragon Book”,
GEN[B4]={d7} |d7:i:=a+j | B4 AW, 1986
KILL[B4]={d1,d4}
IN[B4]=0

OUT[B4]={dT}

Y.N. Srikant Data-flow Analysis

Reaching Definitions Analysis: An Example - Pass 2

Pass 2

d1:i:=m-| GEN[B1I={d1,d2,d3}
Bl |gij:=pn | KILL[BT]={d4,d5,d6,d7}
d3-a-=ul | IN[B1]=®, OUT[B1]={d1,d2,d3}

GEN[B2]={d4,d5}
KILL[B2]={d1,d2,d7} d4:i:=i+1| B2
IN[B2]={d1,d2,d3,d7} ds:j:=j1
OUT[B2]={d3,d4,d5}

GEN[B3]={d6}

dé:a:=u2| B3
KILL[B3]={d3}

Adapted from the
IN[B3]={d4,d5} e o
OUT[B3]={d4,d5,d6} : :
d7:i:=a+j| B4 AW, 1986

GEN[B4]={d7}
KILL[B4]={d1,dd4}
IN[B4]={d4,d5, d6} exit

OUT[B4]={d5,d6,d7}

Y.N. Srikant Data-flow Analysis

Reaching Definitions Analysis: An Example - Final

Final
d1:i:=m-1| GEN[B11={d1,d2,d3}
B1 dZ:j:=n KILL[B1]={d4,d5,d6,d7}
d3: a:=ul IN[B1]=®, OUT[B1]={d1,d2,d3}
GEN[B2]={d4,d5} ——
KILL[B2]={d1,d2,d7} |d4i:=i+1| B2
IN[B2]={d1,d2,d3,d5,ds,d7} |d5:]:=]-1
QUT[B2]={d3,d4,d5,d6}
GEN[B3]=(d6} [g6:a = uz]| B3
KILL[B3]={d3}
IN[B3]={d3,d4,d5,d6} Adapted from the
QOUT[B3]={d4,d5,d6} - . “Dragon Book’,
GEN[B4]={d7} | d7:i:= a+j | B4 AW, 1986
KILL[B4]={d1,d4}
IN[B4]={d3,d4,d5,d6}
OUT[B4]={d3,d5,d6,d7} exit
Y.N. Srikant Data-flow Analysis

An lterative Algorithm for Computing Reaching
Definitions

for each block B do { IN[B] = ¢; OUT[B] = GENIBJ; }
change = true;
while change do { change = false;

for each block B do {

INB] = U OUTIPY;
P a predecessor of B

oldout = OUTIB];
OUT[B] = GEN[B]| J (IN[B] - KILL[B]):;
if (OUT|[B] # oldout) change = true;

}
}

@ GEN, KILL, IN, and OUT are all represented as bit
vectors with one bit for each definition in the flow graph

Y.N. Srikant Data-flow Analysis

Reaching Definitions: Bit Vector Representation

Final dataflow value sets

shown in bit vector format
GEN[B1]= [1[1T1T0T0T0[0]

B1 g;f!f M- qLLe1)= (O[O0 T[1][1]
i7", | NmB1= [o[olofolol0l0

ouTB1]= [1[1[1]0[0]0[0]

GEN[B2]={d4,d5} a1ld2]d3ladlas]deld7
KILL[B2]={d1,d2,d7} |d4:i:=i+1| B2

IN[B2]={d1,d2,d3,d5,d6,d7} | d5:] :=j-1

OUT[B2]={d3,d4,d5,d6}

—

GEN[B3]={d6} | 46:a:=uz| B3
KILL[B3]={d3}

IN[B3]={d3,d4,d5,d6} Adapted from the
OUT[B3]={d4,d5,d6} = g4 “Dragon Book”,
GEN[B4]={d7} | d7:i:= atj AW, 1986
KILL[BA4]={d1,d4}

IN[B4]={d3,d4,d5,d6}
OUT[B4]={d3,d5,d6,d7} exit

Y.N. Srikant Data-flow Analysis

Use-Definition Chains (u-d chains)

Reaching definitions may be stored as u-d chains for
convenience

A u-d chain is a list of a use of a variable and all the
definitions that reach that use

u-d chains may be constructed once reaching definitions
are computed

case 1: If use u1 of a variable b in block B is preceded by
no unambiguous definition of b, then attach all definitions
of bin IN[B] to the u-d chain of that use u1 of b

case 2: If any unambiguous definition of b preceeds a use
of b, then only that definition is on the u-d chain of that use
of b

case 3: If any ambiguous definitions of b precede a use of
b, then each such definition for which no unambiguous
definition of b lies between it and the use of b, are on the
u-d chain for this use of b

Y.N. Srikant Data-flow Analysis

Use-Definition Chain Construction

IN[B]
= B
l B | b= (def d1) b i= (def d1)
B n° en
no other = :
A e
def. of ‘b’ def. of ‘b’ here 42)
= b (use u1 = L
() =b(use u1) unambiguous
def. of ‘b’ here
attach def of ‘b’ attach def d1
in IN[B] to u-d alone to use u1 = b (use ul)
chain of use u1

attach both d1 and
d2 to use u1

Three cases while constructing
u-d chains from the reaching
definitions

Y.N. Srikant Data-flow Analysis

Use-Definition Chain Example

Adapted from the
“Dragoh Book”,

AW, 1986 d1:i:=m-1 | GEN[B1]={d1,d2,d3}
Bl \gp:j=n | KILL[B1]={d4,d5,d6,d7}
d3:a-=u1 | IN[B1]=0®, OUT[B1]={d1,d2,d3}
GEN[B2]={d4,d5} -
KILL[B2]={d1,d2,d7} |d4:i:=i+1| B2 use | u-d chain
IN[B2]={d1,d2,d3,d5,d6,d7} | d5:]:= -1 .
QUT[B2]={d3,d4,d5,d6} (iad) | (d1.d7)
GENI[B3]={d6} [gg:a=uz| B3 (3.d5) | (d2,d3)
KILL[B3]={d3}
IN[B3]={d3,d4,d5,d6} (a,d7) | (d3,d6)
QUT[B3]={d4,d5,d6}
GEN[B4]={d7} | d7:i:= a+j | B4 (j,d7) (d5)
KILL[B4]={d1,d4}
IN[BA4]={d3,d4,d5,d6}
OUT[B4]={d3,d5,d6,d7} | exit
Y.N. Srikant Data-flow Analysis

Available Expression Computation

@ Sets of expressions constitute the domain of data-flow
values

@ Forward flow problem
@ Confluence operator is N

@ An expression x + y is available at a point p, if every path
(not necessarily cycle-free) from the initial node to p
evaluates x + y, and after the last such evaluation, prior to
reaching p, there are no subsequent assignments to x or y

@ A block kills x + y, if it assigns (or may assign) to x or y
and does not subsequently recompute x + .

@ A block generates x + y, if it definitely evaluates x + y, and
does not subsequently redefine x or y

Y.N. Srikant Data-flow Analysis

Available Expression Computation(2)

@ Useful for global common sub-expression elimination
@ 4xjisa CSE in B3, if it is available at the entry point of B3

i.e., if i is not assigned a new value in B2 or 4 x i is

recomputed after i is assigned a new value in B2 (as

shown in the dotted box)

t1 = 4%

i=.. il no asgmnt.
to=4% tol B2

\"‘*—»« t2 = 4%

Y.N. Srikant Data-flow Analysis

B1

B3

Available Expression Computation (3)

@ The data-flow equations

IN[B] = N OUTIP], B not initial
P is a predecessor of B
OUT[B] = e_gen[B]|] (IN[B] - e_kill[B])
IN[B1] = ¢
IN[B] = U, for all B # B1 (initialization only)
@ B1 is the intial or entry block and is special because
nothing is available when the program begins execution
@ IN[B1] is always ¢
@ Uis the universal set of all expressions
@ Initializing IN[B] to ¢ for all B # B1, is restrictive

Y.N. Srikant Data-flow Analysis

Computing e_gen and e_Kkill

@ For statements of the form x = a, step 1 below does not
apply

@ The set of all expressions appearing as the RHS of
assignments in the flow graph is assumed to be available
and is represented using a hash table and a bit vector

Computing e_gen|[p]

1. A=A U {y+z}
e_gen[q] =A _q .+ 2. A = A — {all expressions
X=y+z involving x}
p- 3. e_genp]=A

Computing e_Kkill[p]

e killqg=A g 1 A=A-{y2)
S X=y+z 2. A=AU {all expressions
involving x}
P 3. e kil[p] = A

Y.N. Srikant Data-flow Analysis

Available Expression Computation - An Example

B1

B2

B4

BS

t1=1>1
if 1t1 goto B9
false l
i=o
B3 |42 =1

l

13 = j<t2
if 1t3 goto B8

false l

t4 = 4%
15 = a[td]
t6 = j+1
t7=4+16
18 = a[t7]
t9=15>1t8
if 1t9 goto B7

i=t21
goto B2

false

t10=4% ¢——v0 0
t11 = a[t10]
temp = t11

t2=4% g——
t3=a+t12

t14 =j+1 H——
t15=4*t14

116 = a[t15] B6
*13 =116

t17 =j+1 ——
t18=4*t17
t19=a+t18

*t19 = temp

120 = j+1

j=t20 B7

goto B4

Y.N. Srikant

Data-flow Analysis

Available Expression Computation - An Example (2)

B

B2

B4

BS

1

t1=1>1
if 1t1 goto B9
false l
j=0
B3 |42 =1

l

13 = j<t2
if 1t3 goto B8

false l

t4 = 4%
15 = a[td]
t6 = j+1
t7=4+16
18 = a[t7]
t9=15>1t8
if 1t9 goto B7

i=t21
goto B2

false

t10=t4 ¢+—
t11 = a[t10]
temp = t11

t12=t4 ——0
t3=a+t12

t14=16 €¢—
t15=4*t14

116 = a[t15] B6
*13 = t16

t17=t6 €——
t18=4*t17
t19=a+t18

*t19 = temp

120 = t6

j=t20 B7

goto B4

Y.N. Srikant

Data-flow Analysis

An lterative Algorithm for Computing Available
Expressions

for each block B # B1 do {OUT[B] = U — e_kill[B]; }
/* You could also do IN[B] = U;*/
/* In such a case, you must also interchange the order of */
/* IN[B] and OUT[B] equations below */
change = true;
while change do { change = false;
for each block B = B1 do {

IN[B] = N OUTIPY;
P a predecessor of B

oldout = OUTI[B];
OUT[B] = e_gen[B]| J (IN[B] - e_kill[B]);
if (OUT|[B] # oldout) change = true;

}
}

Y.N. Srikant Data-flow Analysis

Initializing IN[B] to ¢ for all B can be restrictive

B1

Let e_gen[B2] be G and e_kill[B2]
be K

IN[B2] = QUT[B1] N CUT[B2]

OUT[B2]=G U IN[B2] - K)

IN°[B2]=®, OUT[B2]=G

IN'[B2]=OUTBIIN G

OUT?[B2]=G U ((CUT[B1] N G) — K)
=GUG=G

Note that (OQUT[B1] N G) is always

smaller than G

IN'[B2]= U, OUT'[B2]= U - K

IN'[B2]=OUT[B1] N (U — K)
=Q0UT[B1] -K
OUT?B2]=G U ((OCUT[B1] - K) - K)
=G U OUT[B1]- K)
This set OUT[B2] is larger and more
intuitive, but still correct

Data-flow Analysis

Live Variable Analysis

The variable x is live at the point p, if the value of x at p
could be used along some path in the flow graph, starting
at p; otherwise, x is dead at p
Sets of variables constitute the domain of data-flow values
Backward flow problem, with confluence operator | J
IN[B] is the set of variables live at the beginning of B
OUTB] is the set of variables live just after B
DEF|B] is the set of variables definitely assigned values in
B, prior to any use of that variable in B
USE|[B] is the set of variables whose values may be used
in B prior to any definition of the variable

ouT[B] = U IN[S]

S is a successor of B

IN[B] USE[B] U (OUT[B] — DEF[B])
IN[B] = ¢,for all B (initialization only)

Y.N. Srikant Data-flow Analysis

Live Variable Analysis: An Example

i :=lm-1 USE[B1]={m,n,u1}
Bl |j:=n DEF[B1]={i,j,a}
a:=ul IN[B1]={m,n,u1,u2}

OUT[B1]={i,j,u2,a)

USE[B2]={i,j}
DEF[B2]={} i=i+1
IN[B2]={i,j,u2,a} J=)1 B2
QUT[B2]={u2,a,j}

USE[B3]={u2}
DEF[B3]={a}
IN[B3]={j,u2}
QUT[B3]={a,j,u2}

USE[B4]={a,j}
DEF[B4]={i}

IN[B4]={a,},u2} B
OUT[B4I={a,ij,u2} [exit |

Y.N. Srikant Data-flow Analysis

