
Data-flow Analysis - Part 3

Y.N. Srikant

Department of Computer Science
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Compiler Design

Y.N. Srikant Data-flow Analysis



Data-Flow Analysis Schema

A data-flow value for a program point represents an
abstraction of the set of all possible program states that
can be observed for that point
The set of all possible data-flow values is the domain for
the application under consideration

Example: for the reaching definitions problem, the domain
of data-flow values is the set of all subsets of of definitions
in the program
A particular data-flow value is a set of definitions

IN[s] and OUT [s]: data-flow values before and after each
statement s
The data-flow problem is to find a solution to a set of
constraints on IN[s] and OUT [s], for all statements s

Y.N. Srikant Data-flow Analysis



Data-Flow Analysis Schema (2)

Two kinds of constraints
Those based on the semantics of statements (transfer
functions)
Those based on flow of control

A DFA schema consists of
A control-flow graph
A direction of data-flow (forward or backward)
A set of data-flow values
A confluence operator (normally set union or intersection)
Transfer functions for each block

We always compute safe estimates of data-flow values
A decision or estimate is safe or conservative, if it never
leads to a change in what the program computes (after the
change)
These safe values may be either subsets or supersets of
actual values, based on the application

Y.N. Srikant Data-flow Analysis



Live Variable Analysis

The variable x is live at the point p, if the value of x at p
could be used along some path in the flow graph, starting
at p; otherwise, x is dead at p
Sets of variables constitute the domain of data-flow values
Backward flow problem, with confluence operator

⋃
IN[B] is the set of variables live at the beginning of B
OUT [B] is the set of variables live just after B
DEF [B] is the set of variables definitely assigned values in
B, prior to any use of that variable in B
USE [B] is the set of variables whose values may be used
in B prior to any definition of the variable

OUT [B] =
⋃

S is a successor of B

IN[S]

IN[B] = USE [B]
⋃

(OUT [B]− DEF [B])

IN[B] = φ, for all B (initialization only)

Y.N. Srikant Data-flow Analysis



Live Variable Analysis: An Example

Y.N. Srikant Data-flow Analysis



Definition-Use Chains (d-u chains)

For each definition, we wish to attach the statement
numbers of the uses of that definition
Such information is very useful in implementing register
allocation, loop invariant code motion, etc.
This problem can be transformed to the data-flow analysis
problem of computing for a point p, the set of uses of a
variable (say x), such that there is a path from p to the use
of x , that does not redefine x .
This information is represented as sets of (x , s) pairs,
where x is the variable used in statement s
In live variable analysis, we need information on whether a
variable is used later, but in (x , s) computation, we also
need the statment numbers of the uses
The data-flow equations are similar to that of LV analysis
Once IN[B] and OUT [B] are computed, d-u chains can be
computed using a method similar to that of u-d chains

Y.N. Srikant Data-flow Analysis



Data-flow Analysis for (x,s) pairs

Sets of pairs (x,s) constitute the domain of data-flow values
Backward flow problem, with confluence operator

⋃
USE [B] is the set of pairs (x , s), such that s is a statement
in B which uses variable x and such that no prior definition
of x occurs in B
DEF [B] is the set of pairs (x , s), such that s is a statement
which uses x , s is not in B, and B contains a definition of x
IN[B] (OUT [B], resp.) is the set of pairs (x , s), such that
statement s uses variable x and the value of x at IN[B]
(OUT [B], resp.) has not been modified along the path from
IN[B] (OUT [B], resp.) to s

OUT [B] =
⋃

S is a successor of B

IN[S]

IN[B] = USE [B]
⋃

(OUT [B]− DEF [B])

IN[B] = φ, for all B (initialization only)

Y.N. Srikant Data-flow Analysis



Definition-Use Chain Example

Y.N. Srikant Data-flow Analysis



Definition-Use Chain Construction

Y.N. Srikant Data-flow Analysis



Very Busy Expressions or Anticipated Expressions

An expression B op C is very busy or anticipated at a point
p, if along every path from p, we come to a computation of
B op C before any computation of B or C
Useful in code hoisting and partial redundancy elimination
Code hoisting does not reduce time, but reduces space
We must make sure that no use of B op C (from X,Y, or Z
below) has any definition of B or C reaching it without
passing through p

Y.N. Srikant Data-flow Analysis



Very Busy Expressions or Anticipated Expressions (2)

Sets of expressions constitute the domain of data-flow
values
Backward flow analysis with

⋂
as confluence operator

V_USE [n] is the set of expressions B op C computed in n
with no prior definition of B or C in n
V_DEF [n] is the set of expressions B op C in U (the
universal set of expressions) for which either B or C is
defined in n, prior to any computation of B op C

OUT [n] =
⋂

S is a successor of n

IN[S]

IN[n] = V_USE [n]
⋃

(OUT [n]− V_DEF [n])

IN[n] = U, for all n (initialization only)

Y.N. Srikant Data-flow Analysis



Anticipated Expressions - An Example

Y.N. Srikant Data-flow Analysis



Data-Flow Problems: A Summary - 1

The Reaching Definitions Problem
Domain of data-flow values: sets of definitions
Direction: Forwards
Confluence operator: ∪
Initialization: IN[B] = φ

Equations:

IN[B] =
⋃

P is a predecessor of B

OUT [P]

OUT [B] = GEN[B]
⋃

(IN[B]− KILL[B])

Y.N. Srikant Data-flow Analysis



Data-Flow Problems: A Summary - 2

The Available Expressions Problem
Domain of data-flow values: sets of expressions
Direction: Forwards
Confluence operator: ∩
Initialization: IN[B] = U
Equations:

IN[B] =
⋂

P is a predecessor of B

OUT [P]

OUT [B] = e_gen[B]
⋃

(IN[B]− e_kill[B])

IN[B1] = φ

Y.N. Srikant Data-flow Analysis



Data-Flow Problems: A Summary - 3

The Live Variable Analysis Problem
Domain of data-flow values: sets of variables
Direction: backwards
Confluence operator: ∪
Initialization: IN[B] = φ

Equations:

OUT [B] =
⋃

S is a successor of B

IN[S]

IN[B] = USE [B]
⋃

(OUT [B]− DEF [B])

Y.N. Srikant Data-flow Analysis



Data-Flow Problems: A Summary - 4

The Anticipated Expressions (Very Busy Expressions) Problem
Domain of data-flow values: sets of expressions
Direction: backwards
Confluence operator: ∩
Initialization: IN[B] = U
Equations:

OUT [B] =
⋂

S is a successor of B

IN[S]

IN[B] = V_USE [B]
⋃

(OUT [B]− V_DEF [B])

Y.N. Srikant Data-flow Analysis


