L. Sunil Chandran

Computer Science and Automation, Indian Institute of Science, Bangalore Email: sunil@csa.iisc.ernet.in

Hall's Theorem: Second Proof.

- Suppose Hall's condition is satisfied, and there is matching of *A*.
- Then there is an unmatched vertex in *A*. Call it *a*₀.
- We will generate a sequence of distinct vertices, $a_0, b_1, a_1, b_2, a_2, ...$

- In this sequence b_i , a_i will always be a matching edge.
- b_{i+1} will be a neighbor of some vertex in $\{a_0, a_1, \dots, a_i\}$
- Start with a_0 . We can always find b_1 . Can b_1 be an unmatched vertex ?

- After picking a_0 to a_i , can we get b_{i+1} , always? Yes- because of Hall's condition.
- Can b_{i+1} be an unmatched vertex? No- in that case we will get an augmenting path.
- Since b_{i+1} is a matched vertex, we can always get a_{i+1} .
- So, the sequence never ends. But since there are only finite number of vertices, it is a contradiction.

Using Hall's Theorem:

If G is k-regular ($k \ge 1$) bipartite graph, then it has a perfect matching

To show this we just need to show that the Hall's condition is true for k-regular bipartite graphs.

Any 2k-regular graph has a cycle cover (2-factor).

Before getting to the proof the above statement, we need to discuss some concept. First, given an undirected graph here is a way of associating a bipartite graph to it. Bipartite Double Cover of G: The two sides A and B are copies of V(G). Lets us say the copy of the vertex i of G, is named a_i in A and b_i in B.

We add an edge from a_i to b_j whenever there is an edge (i,j) in G.

In the above, note that if (i,j) is an edge in G, we get two different edges (a_i,b_j) and (a_j,b_i) . For a directed graph, if we do a corresponding construction, a directed edge will correspond to exactly one edge in the bipartite cover graph.

Relation between a directed cycle cover in a directed graph and a perfect matching in its bipartite double cover.

To show that an undirected 2k-regular graph G has a cycle cover (2-factor) we covert G to a bipartite graph as follows. First we give a direction to each edge of G to get a directed graph G'. Now get the bipartite cover $B_{G'}$ of G'.

- Instead of showing a cycle cover in G, we will show a directed cycle cover in G'.
- To show a directed cycle cover in G' it is enough to show a perfect matching in $B_{G'}$.
- For that it is enough to show that $B_{G'}$ is regular.

- But, is $B_{G'}$ regular ? For $B_{G'}$ to be regular G' should be such that for each vertex v of G, indegree(v) = outdegree(v) = k.
- So, how do we orient the edges of *G*, so that *G'* has the above property ?
- The trick is to use and Euler tour.

- What is an Euler Tour ?
- How does help us to orient the edges of G
 ?
- Finally, is it guaranteed that there is an Euler tour in *G*?

A connected graph ${\cal G}$ has an Euler tour if and only if every vertex has even degree.