L. Sunil Chandran

Computer Science and Automation, Indian Institute of Science, Bangalore Email: sunil@csa.iisc.ernet.in A set $S \subseteq V(G)$ is a dominating set if every vertex not in S has a neighbour in S. The domination number $\gamma(G)$ is the minimum size of a dominating set in G.

If there are no isolated vertices in G, then $\gamma(G) \leq \beta(G)$.

Every n vertex graph with minimum degree k has a dominating set of cardinality at most $n\frac{1+\ln{(k+1)}}{k+1}$

A set of vertices in a graph is an independent dominating set if and only if it is a maximal independent set.

Every claw free graph has an independent dominating set of size $\gamma(G)$.

A path cover of a directed graph G is a set of disjoint paths in G which together contain all the vertices of G.

Every directed graph G has a path cover \mathcal{P} and independent set $\{v_P : P \in \mathcal{P}\}$ of vertices such that $v_P \in P$ for every $P \in \mathcal{P}$.

In every finite partially ordered set (P, \leq) , the minimum number of chains with union P is equal to the maximum cardinality of an antichain in P.