Graph Theory: Lecture No. 10

L. Sunil Chandran

Computer Science and Automation, Indian Institute of Science, Bangalore Email: sunil@csa.iisc.ernet.in If G is 3-connected and |G| > 4 then G has an edge e such that G/e is again 3-connected.

A graph G is 3-connected if and only if there exists a sequence G_0, G_1, \ldots, G_n of graphs such that the following properties hold.

- (1) $G_0 = K_4$ and $G_n = G$.
- (2) G_{i+1} has an edge (x, y) with $d(x), d(y) \ge 3$ and $G_i = G_{i+1}/(x, y)$, for every i < n.

Given sets $A, B \subset V(G)$ we call a path $P = (x_0, ..., x_k)$ an A - B path if $A \cap V(P) = \{x_0\}$ and $B \cap V(P) = \{x_k\}$

If $A, B \subseteq V(G)$ and $X \subseteq V(G)$ is such that every A - B path in G contains a vertex in X, then we say the X separates the sets A and B in G.

Let G = (V, E) be a graph and $A, B \subseteq V$. Then the minimum number of vertices separating Afrom B in G is equal to the maximum number of disjoint A - B paths in G. For $B \subseteq V$ and $a \in V - B$, the minimum number of vertices $\neq a$ separating a from B in G is equal to the maximum number of paths forming an a - B fan in G.

Let a and b be two distinct vertices in G. Then if $(a, b) \notin E$, then the minimum number of vertices $\neq a, b$ separating a from b in G is equal to the maximum number of internally vertex disjoint a - b paths in G. Graph Theory: Lecture No. 10

A graph is k-connected if and only if it contains k independent paths between any two vertices.