Graph Theory: Lecture No. 11

L. Sunil Chandran

Computer Science and Automation, Indian Institute of Science, Bangalore Email: sunil@csa.iisc.ernet.in Let G = (V, E) be a graph and $A, B \subseteq V(G)$. Then the minimum number of vertices separating A from B in G is equal to the maximum number of disjoint A - B paths in G. The minimum number of edges separating a from b in G is equal to the maximum number of edge disjoint a-b paths in G.

Graph Theory: Lecture No. 11

A graph is k-edge connected if and only if it contains k edge disjoint paths between any two vertices.

Let G be a graph. Let $X \subseteq V(G)$. We say that X is linked in G if whenever we pick distinct vertices $s_1, s_2, \ldots, s_k, t_1, \ldots, t_k$ in X we can find disjoint paths P_1, \ldots, P_k in G such that each P_i links s_i to t_i and has no inner vertex in X. If $|V(G)| \geq 2k$, and every set of at most 2kvertices is linked in G. then G is k-linked. Equivalently, a graph G is k linked if disjoint paths P_1, \ldots, P_k (where P_i is from s_i to t_i) exist for every choice of exactly 2k vertices $S_1, S_2, \ldots, S_k, t_1, \ldots, t_k$