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Given an edge e let a probability space be
associated with it, such that Q. = {0, 1.} and
choosing P.(1.) = p and P,(0.) =g=1—p as
the probabilities of its two elementary events.
We define the probability space G(n, p) by
defining, Q = [[.p Qe.

An element of ) is a map w assigning to each
e € [V]? either 0. or 1. and the probability
measure P on () is the product measure of all

the measures P..

We identify w with the graph G on V such
that £(G) = {e:w(e) = 1.}, and call G a
random graph on V with edge probability p.
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Let A. = {w: w(e) = 1.} be the event
consisting of all graph on V with e € E(G).
Then the events A, are independent and occur
with probability p.
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For all integers n, kK with n > k > 2, the
probability that G € G(n, p) has a set of k
independent vertices is at most

Pla(6) = K] < ()qL)
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For every r € N, there exists n € N such that
every graph of order at least n contains either

K, or K, as an induced subgraph.
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R(r) <2273,
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(Erd 6s 1947) For every integer k > 3, the
Ramsey Number of k satisfies: R(k) > 2k/2,
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For a random variable X on G(n, p), the mean
or the expect value of X is given by:

E(X) - ZGég(n,p) P(G)X(G)
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Markov’s Inequality: Let X > 0 be a random
variable on G(n, p) and a > 0. Then:

PIX > 4] < £C9,
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