Graph Theory: Lecture No. 35

L. Sunil Chandran

Computer Science and Automation, Indian Institute of Science, Bangalore Email: sunil@csa.iisc.ernet.in Given an edge e let a probability space be associated with it, such that $\Omega_e = \{0_e, 1_e\}$ and choosing $P_e(1_e) = p$ and $P_e(0_e) = q = 1 - p$ as the probabilities of its two elementary events. We define the probability space $\mathcal{G}(n,p)$ by defining, $\Omega = \prod_{e \in [V]^2} \Omega_e$.

An element of Ω is a map ω assigning to each $e \in [V]^2$ either 0_e or 1_e and the probability measure P on Ω is the product measure of all the measures P_e .

We identify ω with the graph G on V such that $E(G) = \{e : \omega(e) = 1_e\}$, and call G a random graph on V with edge probability p.

Let $A_e = \{\omega : \omega(e) = 1_e\}$ be the event consisting of all graph on V with $e \in E(G)$. Then the events A_e are independent and occur with probability p.

For all integers n, k with $n \ge k \ge 2$, the probability that $G \in \mathcal{G}(n, p)$ has a set of k independent vertices is at most

$$P[\alpha(G) \geq k] \leq \binom{n}{k} q^{\binom{k}{2}}$$

For every $r \in N$, there exists $n \in N$ such that every graph of order at least n contains either K_r or $\overline{K_r}$ as an induced subgraph.

Graph Theory: Lecture No. 35

$$R(r) \leq 2^{2r-3}.$$

Graph Theory: Lecture No. 35

(Erd ös 1947) For every integer $k \ge 3$, the Ramsey Number of k satisfies: $R(k) > 2^{k/2}$.

For a random variable X on $\mathcal{G}(n,p)$, the mean or the expect value of X is given by: $E(X) = \sum_{G \in \mathcal{G}(n,p)} P(G).X(G)$

Markov's Inequality: Let $X \ge 0$ be a random variable on $\mathcal{G}(n,p)$ and a>0. Then:

$$P[X \geq a] \leq \frac{E(X)}{a}$$
.



