L. Sunil Chandran

Computer Science and Automation, Indian Institute of Science, Bangalore Email: sunil@csa.iisc.ernet.in

- Contract an edge.
- 2 Delete a vertex.
- Delete an edge.

Let G be a graph. If X is another graph, and $\{V_x : x \in V(X)\}$ is a partition of V(G) into connected subsets such that for any two vertices $x, y \in X$, there is a V_x - V_y edge in G if and only if $(x, y) \in E(G)$, we say that G is an MX and write G = MX. V_x are the branch sets of MX

G is an MX if and only if X can be obtained from G by a series of edge contractions, i.e. if and only if there are graphs G_0, \ldots, G_n and edges $e_i \in G_i$ such that $G_0 = G$, $G_n = X$ and $G_{i+1} = G_i/e_i$, for all i < n.

If G = MX is a subgraph of another graph Y, then we say that X is a minor of Y.

If we replace the edges of X with independent paths between ends, we call the graph G obtained a subdivision of X, and write G = TX. If TX is a subgraph of Y then X is a topological minor of Y.

If $\Delta(X) \leq 3$ then every MX contains a TX.

Hadwiger's Conjecture: The following implication holds for every integer r > 0 and every graph G. $\chi(G) \ge r$ implies that K_r is a minor of G

A graph with at least 3 vertices is edge maximal without a K_4 minor if and only if it can be constructed recursively from triangles by pasting along K_2 s.

Every edge maximal graph without a K_4 minor has 2|G|-3 edges.

Hadwiger's Conjecture holds for r = 4

Wagner, 1937: Let G be an edge maximal graph without a K_5 minor. If $|G| \ge 4$, then G can be constructed recursively, by pasting along K_3 s and K_2 s from plane triangulations and copies of the graph W.

A graph with n vertices and no K_5 minor has at most 3n-6 edges.

Hadwiger's conjecture holds for r = 5.

(Robertson, Seymour and Thomas, 1993) Hadwiger's conjecture holds for r = 6.

Kühn and Osthus: For every integer s, there is an integer r_s such that Hadwiger Conjecture holds for all graphs $G \not\supseteq K_{s,s}$ and $r \ge r_s$.

There is a constant g such that all graphs G of girth at least g satisfy the implication $\chi(G) \ge r \to G \supseteq TK_r$ for all r.

There is a constant $c \in R$ such that for $r \in N$, every graph G of average degree $d(G) \ge cr^2$ contains K_r as a topological minor.

Kostochka, 1982: There exists a constant $c \in R$ such that for every $r \in N$, every graph G of average degree $d(G) \geq cr\sqrt{\log r}$ contains K_r as a minor. Up to the value of c, this bound is best possible as a function of r.

Let $d, k \in N$ with $d \ge 3$ and let G be a graph of minimum degree $\delta(G) \ge d$ and girth $g(G) \ge 8k + 3$. Then G has a minor H of minimum degree $\delta(H) \ge d(d-1)^k$.

Thomassen, 1983: There exists a function $f: N \to N$, such that every graph of minimum degree at least 3 and girth at least f(r) has a K_r minor, for all $r \in N$.

Take $f(r) = 8 \log r + 4 \log \log r + c$ for some constant $c \in R$. Take k = k(r) minimal with $3.2^k \ge c' r \sqrt{\log r}$, where c' is the constant from Kostochka's Lemma.

There exists a constant g such that $G \supseteq TK_r$ for every graph G satisfying $\delta(G) \ge r - 1$ and girth $\ge g$.