Graph Theory: Lecture No. 40

L. Sunil Chandran

Computer Science and Automation, Indian Institute of Science, Bangalore Email: sunil@csa.iisc.ernet.in Graph Theory: Lecture No. 40

Kühn and Osthus: For every integer s, there is an integer r_s such that Hadwiger Conjecture holds for all graphs $G \not\supseteq K_{s,s}$ and $r \ge r_s$.

There is a constant g such that all graphs G of girth at least g satisfy the implication $\chi(G) \ge r \to G \supseteq TK_r$ for all r.

There is a constant $c \in R$ such that for $r \in N$, every graph G of average degree $d(G) \ge cr^2$ contains K_r as a topological minor.

Kostochka, 1982: There exists a constant $c \in R$ such that for every $r \in N$, every graph G of average degree $d(G) \geq cr\sqrt{\log r}$ contains K_r as a minor. Up to the value of c, this bound is best possible as a function of r.

Let $d, k \in N$ with $d \ge 3$ and let G be a graph of minimum degree $\delta(G) \ge d$ and girth $g(G) \ge 8k + 3$. Then G has a minor H of minimum degree $\delta(H) \ge d(d-1)^k$.

Thomassen, 1983: There exists a function $f: N \to N$, such that every graph of minimum degree at least 3 and girth at least f(r) has a K_r minor, for all $r \in N$.

Take $f(r) = 8 \log r + 4 \log \log r + c$ for some constant $c \in R$. Take k = k(r) minimal with $3.2^k \ge c' r \sqrt{\log r}$, where c' is the constant from Kostochka's Lemma.

There exists a constant g such that $G \supseteq TK_r$ for every graph G satisfying $\delta(G) \ge r-1$ and girth $\ge g$.

Let G be a graph, T a tree, and let $\nu = (V_t)_{t \in T}$ be a family of vertex sets $V_t \subseteq V(G)$ indexed by the vertices t of T. The pair (T, ν) is called a tree decomposition of G if it satisfies the following 3 conditions.

- $V(G) = \cup_{t \in T} V_t$
- **2** for every edge $e \in G$, there exists a $t \in T$, such that both ends of e lie in V_t .
- $V_{t_1} \cap V_{t_2} \subseteq V_{t_3}$ whenever t_3 belongs to the unique path between t_1 and t_2 in T.

Email id: sunil@csa.iisc.ernet.in Sunil Chandran. L. Computer Science and Automation Dept Indian Institute of Science, Bangalore- 12.