
High Performance Computing
Lecture 1

Matthew Jacob

Indian Institute of Science

2

Agenda
1. Program execution: Compilation, Object files, Function call

and return, Address space, Data & its representation (4)
2. Computer organization: Memory, Registers, Instruction set

architecture, Instruction processing (6)
3. Virtual memory: Address translation, Paging (4)
4. Operating system: Processes, System calls,

Process management (6)
5. Pipelined processors: Structural, data and control hazards,

impact on programming (4)
6. Cache memory: Organization, impact on programming (5)
7. Program profiling (2)
8. File systems: Disk management, Name management,

Protection (4)
9. Parallel programming: Inter-process communication,

Synchronization, Mutual exclusion, Parallel architecture,
Programming with message passing using MPI (5)

3

Reference Material
Patterson and Hennessy, Computer Organization

and Design: The Hardware/Software Interface, 4th

Edition ARM Edition, Morgan Kaufman Publishers,
2010.

Silberschatz, Galvin and Gagne, Operating System
Concepts, 8th Edition, John Wiley & Sons, Inc, 2008.

Bryant and O’Hallaron, Computer Systems: A
Programmer’s Perspective, Addison Wesley, 2002.

4

Course Objective
 To understand what happens on a computer

system during program execution
 Why?
 In order to improve the quality of the programs

that you write

5

What is a Computer Program?
 Description of algorithms and data structures

to achieve a specific objective
 Could be done in any language, even a

natural language like English
 Programming language: A Standard notation

for writing programs
 Examples: C, Java, Intel assembly language
 An extreme example: Machine language
 Hence the need for program translators
 Example: gcc

6

What does gcc do for you?
% gcc hello.c

hello.c a.out
gcc

“source”: Program
that you wrote in
the C language and
typed into the file
hello.c

“object”: File generated
by gcc. The a.out file
contains an equivalent
program in machine
language that can be
executed on a computer
system

7

Steps in gcc
 cpp, cc1, as, ld
 Temporary files are generated in between for use by

the next step

8

Steps in gcc.

cpphello.c

Library files

cc1

as

ld

hello.s

hello.o

a.out

e.g., math.o, the math library

9

Steps in gcc..
 The a.out file has a well defined format

 i.e., you can open an a.out file and find specific information
or data at specified places

 What does the a.out file contain?
 Program “code” (machine instructions)
 Data values (values, size of arrays)
 Other information that is needed for
 execution
 debugging

 Debugging: A stage in program development where you
are identifying the mistakes (“bugs”) in your program

10

Example
#include <stdio.h>
#include <math.h>
float arr[100];
int size=100;
void main()
{ int i;

float sum;
for (i=0, sum=0.0; i<size; i++)
{ arr[i] = sqrt(arr[i]);

sum += arr[i];
}
printf ("sum is %f\n",sum);

}

11

Object file format

Symbol Table

Initialized Data

Machine Code

Header Info

Relocation Info

12

Format of the Object File

code for call sqrt??66

……

Start of main; Code
for first instruction

??20Machine
Code

Relocation Info??16

Symbol Table6012

Uninitialized Data size4008

Initialized Data size44

Machine Code Size940Header
Info.

13

Format of the Object File

Info. on offsets at which
external variables are called

??178Relocation
Info

Name of symbol
“printf” & its address

printf?? 166

Name of symbol “sqrt”
and its address

Sqrt?? 154

main

arr

size

--

Name of symbol
“main” & its address

ZZ142

Name of symbol “arr”
and its address

YY130

Name of symbol
“size” and its address

XX118

Symbol
Table

Initialized Data100114Init. Data

14

Steps in gcc.

cpphello.c

Library files

cc1

as

ld

hello.s

hello.o

a.out

e.g., math.o, the math library

15

Steps in gcc.

cpphello.c

Library files

cc1

as

ld

hello.s

hello.o

a.out

e.g., math.o, the math library

ld Linkage editor

Merges 2 or more object files into one

16

Linking Multiple Modules

Symbol Table

Data

Compute(){
call MatMul()

}

Header Info

Reloc Info

MatMul(){
}

Header Info

Symbol Table

Data

Reloc Info

17

Symbol Table

Data

Compute(){
call MatMul

}

Header Info

Relocation Info

Compute()

MatMul()

Combined
Header Info

Symbol Table

Combined
Data

Reloc Info
MatMul(){
}

Header Info

Symbol Table

Data

Relocation Info

Linking Multiple Modules

18

Program = Instructions + Data
 We will next learn more about data

19

There are different kinds of data
How does one piece of data differ from another?
 Constant vs variable
 Basic vs structured
 Of different types
 Character
 Integer (unsigned, signed)
 Real
 Others (boolean, complex, …)

20

Data differing in their lifetimes
 Lifetime: Interval between time of creation and

end of existence
 How long can the lifetime of a datum be?
 We will consider 3 possible lifetimes

21

1. Lifetime = Execution time of program
 Initialized/uninitialized data
 Must be indicated in executable file
 The space for all of this data can be assigned when

program execution starts (Static Allocation)

Program Data: Different Lifetimes.

22

Program Data: Different Lifetimes.
1. Lifetime = Execution time of program
2. Lifetime = Time between explicit creation of

data & explicit deletion of data
 Dynamic memory allocation
 In C you create new data using a function like

malloc()
 The space for this data is managed dynamically

when the malloc/free is executed (Heap allocation)

23

1. Lifetime = Execution time of program
2. Lifetime = Time between explicit creation of

data & explicit deletion of data
3. Lifetime = During execution of a function (i.e.,

time between function call and return)
 Local variables, parameters of the function
 The space for this data is assigned when the function

is called and reclaimed on return from the function
(Stack allocation)

 Stack: Like a pile of books on a table

Program Data: Different Lifetimes..

24

Stack allocated: Function Local Variables

Local Variables of main Top of Stack Pointer

When the program starts executing

What if main() then calls function func1()?

25

Stack allocated: Function Local Variables.

Local Variables of main

Other info about
function call

Local variables of func1
Top of Stack Pointer

While executing in function func1()

What happens on return from the call to func1()?

Local Variables of main

26

Stack allocated: Function Local Variables..

Executing in main() once again

Local Variables of main Top of Stack Pointer

27

During program execution
Code (machine language program)
Data (initialized and uninitialized)
Code and Data don’t change in size

while the program is executing
Heap (for dynamically allocated data)
Stack (for function local variables)
Heap and Stack change in size as

program executes

Code

Initialized

Uninitialized

Heap

Stack

28

How is Data Represented?
 On a digital computer
 Binary
 Base 2 number system
 Two values: 0 and 1
 Bit (Notation: b); Byte (Notation: B) 8 bits
 Other notation: K, M, G, T, P etc
 K: 210 , M: 220 , G: 230, etc

 “2 GB of RAM”, “1 TB hard disk drive”

29

Character Data
 Typically represented using the ASCII code
 ASCII: American Standard Code for

Information Interchange
 Each character is represented by a unique 8

bit ASCII code word
 Example: ‘a’ is represented by 01100001, ‘1’

is represented by 00110001

30

How is Data Represented?
 Character data: ASCII code
 Integer data

