
High Performance Computing
Lecture 2

Matthew Jacob

Indian Institute of Science



2

How is Data Represented?
 Character data: ASCII code
 Integer data



3

Integer Data
 Whole numbers, i.e., numbers without fractional 

part
 In computer systems, you usually find support for 

both “signed integers” and “unsigned integers”
 e.g., C programming

int x; Can take +ve or -ve whole number values 
unsigned int y;      Can take on +ve whole number values



4

Representing Signed Integer Data
 Sign-magnitude representation

xxxxx onn 1221 ...


represents the value







2

0
2)1( 1

n

i

i
ixxn

least significant bit 
(lsb)

Example: In 8 bits

13 is represented as   00001101

-13 is represented as  10001101

Sign bit



5

Alternative: 2s Complement Representation

xxx nn 021 ...


The n bit quantity

represents the signed integer value











2

0

1
1 22

n

i

i
i

n
n xx

least significant bit

Example: In 8 bits

13 is represented as   00001101

-13 is represented as  11110011

-128 + 64 + 32 + 16 + 2 + 1



6

Example: Signed integer
16bit 2s complement value 0xED7E

1110110101111110
1110 1101 0111 1110   from `right’, groups of 4 bits
The base 16 digits are 0..9,A,B,C,D,E,F
E         D       7      E

Tells you that the 
binary value is being 
shown in Hexadecimal 
notation

Hexadecimal: Base 16



7

Which Representation is Better?
 Considerations
 Speed of arithmetic (addition, multiplication)
 Speed of comparison
 Range of values that can be represented

 The 2s complement representation is widely 
used



8

How is Data Represented?
 Character data: ASCII code
 Signed Integer data: 2s complement
 Real data



9

Real data
 Real numbers: points on the infinitely long 

real number line
 There are an infinitely many points between any 

two points on the real number line



10

Real Data: Floating Point Representation

IEEE Floating Point Standard (IEEE 754)
32 bit value with 3 components ( s, e, f )

1. s (1 bit sign)
2. e (8 bit exponent) 
3. f (23 bit fraction)

represents the value
1272.1)1(  es f



11

Consider the decimal value 0.5

 Equal to 0.1 in binary 

 s: 0, e: 126, f: 000…000

 In 32 bits,
0 01111110 0000000000000000000000

120.1 
1272.1)1(  es f

Example: IEEE Single Float



12

Example: IEEE Single Float.
32bit IEEE single float 0xBDCCCCCC

1011 1101 1100 1100 1100 1100 1100 1100
1 01111011 100 1100 1100 1100 1100 1100
Sign bit: 1 Negative value
Exponent field: 123 Exponent value: 123 -127 = -4
- 1.100 1100  1100 1100 1100 1100 x 2

Answer: -0.1 decimal

-4

110000110011001100110011.02 3

)21(
1

32
3

4


)
4
3...

4
3

4
3( 222 2043  

1111F
1110E
1101D
1100C
1011B
1010A
10019
10008
01117
01106
01015
01004
00113
00102
00011
00000



13

More on IEEE Floating Point
 Why is the exponent represented in this way? 

(excess-127 representation for signed 
integers)

 Normalized representation
 Special forms
 Denormalized values  (exp = 0; f = non-zero)
 Zero (exp = 0; f = 0) 
 Infinity (exp = 255; f = 0)
 NaN (exp = 255; f = non-zero)



14

How is Data Represented?
 Character data: ASCII code
 Signed Integer data: 2s complement
 Real data: IEEE floating point


