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How is Data Represented?
 Character data: ASCII code
 Integer data
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Integer Data
 Whole numbers, i.e., numbers without fractional 

part
 In computer systems, you usually find support for 

both “signed integers” and “unsigned integers”
 e.g., C programming

int x; Can take +ve or -ve whole number values 
unsigned int y;      Can take on +ve whole number values
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Representing Signed Integer Data
 Sign-magnitude representation

xxxxx onn 1221 ...


represents the value
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Example: In 8 bits

13 is represented as   00001101

-13 is represented as  10001101

Sign bit
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Alternative: 2s Complement Representation

xxx nn 021 ...


The n bit quantity

represents the signed integer value
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Example: In 8 bits

13 is represented as   00001101

-13 is represented as  11110011

-128 + 64 + 32 + 16 + 2 + 1
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Example: Signed integer
16bit 2s complement value 0xED7E

1110110101111110
1110 1101 0111 1110   from `right’, groups of 4 bits
The base 16 digits are 0..9,A,B,C,D,E,F
E         D       7      E

Tells you that the 
binary value is being 
shown in Hexadecimal 
notation

Hexadecimal: Base 16
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Which Representation is Better?
 Considerations
 Speed of arithmetic (addition, multiplication)
 Speed of comparison
 Range of values that can be represented

 The 2s complement representation is widely 
used
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How is Data Represented?
 Character data: ASCII code
 Signed Integer data: 2s complement
 Real data
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Real data
 Real numbers: points on the infinitely long 

real number line
 There are an infinitely many points between any 

two points on the real number line
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Real Data: Floating Point Representation

IEEE Floating Point Standard (IEEE 754)
32 bit value with 3 components ( s, e, f )

1. s (1 bit sign)
2. e (8 bit exponent) 
3. f (23 bit fraction)

represents the value
1272.1)1(  es f
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Consider the decimal value 0.5

 Equal to 0.1 in binary 

 s: 0, e: 126, f: 000…000

 In 32 bits,
0 01111110 0000000000000000000000

120.1 
1272.1)1(  es f

Example: IEEE Single Float
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Example: IEEE Single Float.
32bit IEEE single float 0xBDCCCCCC

1011 1101 1100 1100 1100 1100 1100 1100
1 01111011 100 1100 1100 1100 1100 1100
Sign bit: 1 Negative value
Exponent field: 123 Exponent value: 123 -127 = -4
- 1.100 1100  1100 1100 1100 1100 x 2

Answer: -0.1 decimal
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1111F
1110E
1101D
1100C
1011B
1010A
10019
10008
01117
01106
01015
01004
00113
00102
00011
00000
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More on IEEE Floating Point
 Why is the exponent represented in this way? 

(excess-127 representation for signed 
integers)

 Normalized representation
 Special forms
 Denormalized values  (exp = 0; f = non-zero)
 Zero (exp = 0; f = 0) 
 Infinity (exp = 255; f = 0)
 NaN (exp = 255; f = non-zero)



14

How is Data Represented?
 Character data: ASCII code
 Signed Integer data: 2s complement
 Real data: IEEE floating point


