
High Performance Computing
Lecture 10

Matthew Jacob

Indian Institute of Science

2

We will assume that …
1. Activity is overlapped in time where possible

• PC increment and instruction fetch from memory?
• Instruction decode and effective address calculation

2. Load-store ISA: the only instructions that take
operands from memory are loads & stores

3. Main memory delays are not typically seen by the
processor

• Otherwise the timeline is dominated by them
• There is some hardware mechanism through which

most memory access requests can be satisfied at
processor speeds (cache memory)

3

 Unit of timescale of processor; time required to do a
basic operation

Term: Processor Cycle Time

4

Steps in Instruction Execution
 Fetch instruction from memory to processor

• IR = Memory[PC]
• Increment PC

 Decode instruction and get its operands
• Decode
• Get Operands from registers

 Execute the operation
• Trigger appropriate functional hardware
• Load/store: get data from main memory

 Write back the result
• Write result to destination register

cache memory access
(simple) ALU operation

(simple) logic circuitry
register access

cache access

register access

ALU operation

5

 Unit of timescale of processor; time required to do a
basic operation
 Cache memory access
 Register access + some logic (like decode)
 ALU operation

Term: Processor Cycle Time

6

Steps in Instruction Execution
Fetch instruction from memory to processor

• IR = Memory[PC]; Increment PC
Decode instruction and get its operands

• Decode; Get Operands from registers
Execute the operation

• Trigger appropriate functional hardware
• Load/store: get data from main memory

Write back the result
• Write result to destination register

1 cycle

1 cycle

1 cycle
1 cycle

1 cycle

7

Steps in Execution: JR R6
Fetch instruction from memory to processor

• IR = Memory[PC]; Increment PC
Decode instruction and get its operands

• Decode; Get Operands from registers
Execute the operation

• Trigger appropriate functional hardware
• Load/store: get data from main memory

Write back the result
• Write result to destination register

1 cycle

1 cycle

1 cycle
1 cycle

1 cycle

8

Steps in Execution: ADD R1, R2, R3
Fetch instruction from memory to processor

• IR = Memory[PC]; Increment PC
Decode instruction and get its operands

• Decode; Get Operands from registers
Execute the operation

• Trigger appropriate functional hardware
• Load/store: get data from main memory

Write back the result
• Write result to destination register

1 cycle

1 cycle

1 cycle
1 cycle

1 cycle

9

Steps in Execution: LW R1, -8(R29)
Fetch instruction from memory to processor

• IR = Memory[PC]; Increment PC
Decode instruction and get its operands

• Decode; Get Operands from registers
Execute the operation

• Trigger appropriate functional hardware
• Load/store: get data from main memory

Write back the result
• Write result to destination register

1 cycle

1 cycle

1 cycle
1 cycle

1 cycle

10

 Unit of timescale of processor; time required to do a
basic operation
 Cache memory access
 Register access + some logic (like decode)
 ALU operation

 A MIPS 1 instruction can be processed in 3-5 cycles
 Jump: IFetch, Decode/OpFetch, DoOp (3)
 ALU: IFetch, Decode/OpFetch, DoOp, WriteReg (4)
 Load: IFetch, Decode, EffAddr, Cache, WriteReg (5)

 Addressing modes: (R) vs d(R)

Term: Processor Cycle Time

11

Instruction Execution

Mem
IR

+

PC

NPC
4

Instruction Fetch (IF)
from program memory
to instruction register

IR Mem [PC]
Increment PC

Instr Fetch

12

Instruction Execution.

Instr Fetch

Reg
File

sign
extend

A

Imm

B

Instr Decode

Inst
Mem

IR

+

PC

NPC4

A RegisterFile[IRrs]
B RegisterFile[IRrt]
Imm sign extend(IR15-0)

Instruction Decode & Operand Fetch (ID)

13

Instruction Execution..
Execution (EX)

Arithmetic Inst:
ALU-Out A op B
ALU-Out A op Imm
Load/Store Inst:
ALU-Out A + Imm
Branch Inst:
ALU-Out NPC + Imm
Jump Inst:
PC NPC 31-28 || IR 25-0 ||00

Imm

NPC
ALU-

outALU

Zero?

B

A

Cond.

Execution

14

Instruction Execution…
Memory (MEM)

Execution Memory

Imm

NPC
ALU
outALU

Zero?

Mem LMD
B

A

Cond

Store Instr
Mem[ALUOut] B

Load Instr
LMD Mem[ALUout]

15

Instruction Execution….
Write Back (WB)

ALU Inst
RegisterFile[rd] ALUout

Load Inst
RegisterFile[rt] LMD

Conditional Branch Inst
PC ALU-out if Cond
PC NPC otherwise

16

Inside the Processor

Mem
IR

+

PC

NPC

Reg
File

sign
extend

A

Imm

B

Inst Fetch
IF

Inst Decode
ID

4

ALU
outALU

Zero?

Mem LMD

Execution
EX

Memory
MEM

Cond

WB

17

Reality Check
 Problem: There could be many programs

running on a machine concurrently
 Sharing the resources of the computer
 Processor time
 Main memory

 They must be protected from each other
 One program should not be able to access the

variables of another
 This is typically done through Address Translation

18

Use of Main Memory by a Program
 Instructions (code, text)
 Data
 Statically allocated
 Stack allocated
 Heap allocated

text

data

stack

heap

0

232 - 1

19

Idea of Address Translation
 Each program is compiled to use addresses in the

range 0 .. MaxAddress (e.g., 0 .. 232 - 1)
 These addresses are not real, but only Virtual

Addresses
 They have to be translated into actual main memory

addresses
 The translation can be done to ensure that one

program can not access variables of another program
 Many programs in execution can then safely share

main memory
 Terminology: virtual address, physical address
 Memory Management Unit (MMU): The hardware that

does the address translation

20

Recall: Basic Computer Organization

Cache
Memory

I/O

Bus

I/OI/O

MMU

ALU Registers

CPU

Control

21

Agenda
1. Program execution: Compilation, Object files, Function call

and return, Address space, Data & its representation (4)
2. Computer organization: Memory, Registers, Instruction set

architecture, Instruction processing (6)
3. Virtual memory: Address translation, Paging (4)
4. Operating system: Processes, System calls,

Process management (6)
5. Pipelined processors: Structural, data and control hazards,

impact on programming (4)
6. Cache memory: Organization, impact on programming (5)
7. Program profiling (2)
8. File systems: Disk management, Name management,

Protection (4)
9. Parallel programming: Inter-process communication,

Synchronization, Mutual exclusion, Parallel architecture,
Programming with message passing using MPI (5)

