High Performance Computing
Lecture 10

Matthew Jacob

Indian Institute of Science

We will assume that ...

Activity Is overlapped in time where possible
 PC increment and instruction fetch from memory?
e Instruction decode and effective address calculation

Load-store ISA: the only instructions that take
operands from memory are loads & stores

Main memory delays are not typically seen by the
processor
Otherwise the timeline is dominated by them

There is some hardware mechanism through which
MOosSt memory access requests can be satisfied at
processor speeds (cache memory)

Term: Processor Cycle Time

Unit of timescale of processor; time required to do a
basic operation

Steps In Instruction Execution

IR = Memory[PC] cache memory access
Increment PC (simple) ALU operation

Decode (simple) logic circuitry
. Get Operands from registers register access

. Trigger appropriate functional hardware ALU operation
Load/store: get data from main memory cache access

. Write result to destination register register access

Term: Processor Cycle Time

Unit of timescale of processor; time required to do a
basic operation

o Cache memory access
o Register access + some logic (like decode)
o ALU operation

Steps In Instruction Execution

Fetch instruction from memory to processor
. IR = Memory[PC]; Increment PC 1 cycle

Decode instruction and get its operands
. Decode; Get Operands from registers 1 cycle
Execute the operation

. Trigger appropriate functional hardware 1 cycle
. Load/store: get data from main memory 1 cycle

Write back the result
. Write result to destination register 1 cycle

Steps in Execution: JR R6

Fetch instruction from memory to processor
. IR = Memory[PC]; Increment PC 1 cycle

Decode instruction and get its operands
. Decode; Get Operands from registers 1 cycle
Execute the operation

. Trigger appropriate functional hardware 1 cycle
. Load/store: get data from main memory 1 cycle

Write back the result
. Write result to destination register 1 cycle

Steps in Execution: ADD R1, R2, R3

Fetch instruction from memory to processor
. IR = Memory[PC]; Increment PC 1 cycle

Decode instruction and get its operands
. Decode; Get Operands from registers 1 cycle
Execute the operation

. Trigger appropriate functional hardware 1 cycle
. Load/store: get data from main memory 1 cycle

Write back the result
. Write result to destination register 1 cycle

Steps in Execution: LW R1, -8(R29)

Fetch instruction from memory to processor
. IR = Memory[PC]; Increment PC 1 cycle

Decode instruction and get its operands
. Decode; Get Operands from registers 1 cycle
Execute the operation

. Trigger appropriate functional hardware 1 cycle
. Load/store: get data from main memory 1 cycle

Write back the result
. Write result to destination register 1 cycle

Term: Processor Cycle Time

a

a

a

A MIPS 1 instruction can be processed in 3-5 cycles
o Jump: IFetch, Decode/OpFetch, DoOp (3)

o ALU: IFetch, Decode/OpFetch, DoOp, WriteReg (4)

o Load: IFetch, Decode, EffAddr, Cache, WriteReg (5)

Addressing modes: (R) vs d(R)

10

Instruction Execution

Instruction Fetch (IF)
from program memory

to instruction register

IR «<— Mem [PC]
Increment PC

PC

Mem

Instr Fetch

NPC

IR

11

Instruction Execution.
Instruction Decode & Operand Fetch (ID)

A <— RegisterFile[IR]
B <— ReqgisterFile[IR]
Imm <— sign extend(IR1s-0)

4 NPC Reg
— File » B ™
- PC Inst LR ([

nst
§ 0

Mem
Instr Fetch INStr Decode

12

Instruction Execution..

Execution (EX)

Arithmetic Inst:
ALU-Out «<—AopB
ALU-Out «<— A op Imm

L oad/Store Inst:
ALU-Out < A + Imm

Branch Inst:
ALU-Out <= NPC + Imm

Jump Inst:
PC «— NPC z1-28]| IR 250 |00

——>Zero?™>Cond }/—
—~
NPC
ALl ALU-
= ALV ou [T
—_>
e
ImMmm —
_/

Executl

on

13

Instruction Execution...

Memory (MEM)
Load Instr Store Instr
LMD <— Mem[ALUout] Mem[ALUOQOut] «<— B
»Zero?—*Cond '
NPe L] -
A— _
#X ALU out | 1 Mem L MD—
B —— s —
Imm -—»u r
Execution Memory

14

Instruction Execution....

Write Back (WB)

ALU Inst
RegisterFile[rd] <— ALUout

Load Inst
RegisterFile[rt] <— LMD
Conditional Branch Inst

PC «<— ALU-out if Cond
PC «— NPC otherwise

15

Inside the

Processor

NPC

» Zero7=»Cond

)

4E
PC —

Mem

IR

Inst Fetch

1=

Reg

122!

ten

q
File jp| B |7

sign |mm—|-

—
- ALU
U ALU

out
H— 4\
=

—/

v

T3

Mem _’LMDIZU

Inst Decode
ID

Execution
EX

Memory
MEM

16

WB

Reality Check

Problem: There could be many programs
running on a machine concurrently
Sharing the resources of the computer

o Processor time

2 Main memory

They must be protected from each other

o One program should not be able to access the
variables of another

o This is typically done through Address Translation

17

Use of Main Memory by a Program

Instructions (code, text)

Data

o Statically allocated
o Stack allocated

o Heap allocated

0

text

data

stack

2321

heap

18

ldea of Address Translation

Each program is compiled to use addresses in the
range 0 .. MaxAddress (e.g., 0 .. 232-1)

These addresses are not real, but only Virtual
Addresses

They have to be translated into actual main memory
addresses

The translation can be done to ensure that one
program can not access variables of another program

Many programs in execution can then safely share
main memory

Terminology: virtual address, physical address

Memory Management Unit (MMU): The hardware that
does the address translation

19

Recall: Basic Computer Organization

CPU
ALU Register;

Contro

Memory

MMU Cache

e

170 170 170

Agenda

1.

W

Program execution: Compilation, Object files, Function call
and return, Address space, Data & its representation

Computer organization: Memory, Registers, Instruction set
architecture, Instruction processing

Virtual memory: Address translation, Paging

Operating system: Processes, System calls,
Process management

Pipelined processors: Structural, data and control hazards,
Impact on programming

Cache memory: Organization, impact on programming
Program profiling

File systems: Disk management, Name management,
Protection

Parallel programming: Inter-process communication,
Synchronization, Mutual exclusion, Parallel architecture,
Programming with message passing using MPI

(4)

(6)
(4)

(6)
(4)
(5)
(2)

(4)

(5)

21

