
High Performance Computing
Lecture 10

Matthew Jacob

Indian Institute of Science

2

We will assume that …
1. Activity is overlapped in time where possible

• PC increment and instruction fetch from memory?
• Instruction decode and effective address calculation

2. Load-store ISA: the only instructions that take
operands from memory are loads & stores

3. Main memory delays are not typically seen by the
processor

• Otherwise the timeline is dominated by them
• There is some hardware mechanism through which

most memory access requests can be satisfied at
processor speeds (cache memory)

3

 Unit of timescale of processor; time required to do a
basic operation

Term: Processor Cycle Time

4

Steps in Instruction Execution
 Fetch instruction from memory to processor

• IR = Memory[PC]
• Increment PC

 Decode instruction and get its operands
• Decode
• Get Operands from registers

 Execute the operation
• Trigger appropriate functional hardware
• Load/store: get data from main memory

 Write back the result
• Write result to destination register

cache memory access
(simple) ALU operation

(simple) logic circuitry
register access

cache access

register access

ALU operation

5

 Unit of timescale of processor; time required to do a
basic operation
 Cache memory access
 Register access + some logic (like decode)
 ALU operation

Term: Processor Cycle Time

6

Steps in Instruction Execution
Fetch instruction from memory to processor

• IR = Memory[PC]; Increment PC
Decode instruction and get its operands

• Decode; Get Operands from registers
Execute the operation

• Trigger appropriate functional hardware
• Load/store: get data from main memory

Write back the result
• Write result to destination register

1 cycle

1 cycle

1 cycle
1 cycle

1 cycle

7

Steps in Execution: JR R6
Fetch instruction from memory to processor

• IR = Memory[PC]; Increment PC
Decode instruction and get its operands

• Decode; Get Operands from registers
Execute the operation

• Trigger appropriate functional hardware
• Load/store: get data from main memory

Write back the result
• Write result to destination register

1 cycle

1 cycle

1 cycle
1 cycle

1 cycle

8

Steps in Execution: ADD R1, R2, R3
Fetch instruction from memory to processor

• IR = Memory[PC]; Increment PC
Decode instruction and get its operands

• Decode; Get Operands from registers
Execute the operation

• Trigger appropriate functional hardware
• Load/store: get data from main memory

Write back the result
• Write result to destination register

1 cycle

1 cycle

1 cycle
1 cycle

1 cycle

9

Steps in Execution: LW R1, -8(R29)
Fetch instruction from memory to processor

• IR = Memory[PC]; Increment PC
Decode instruction and get its operands

• Decode; Get Operands from registers
Execute the operation

• Trigger appropriate functional hardware
• Load/store: get data from main memory

Write back the result
• Write result to destination register

1 cycle

1 cycle

1 cycle
1 cycle

1 cycle

10

 Unit of timescale of processor; time required to do a
basic operation
 Cache memory access
 Register access + some logic (like decode)
 ALU operation

 A MIPS 1 instruction can be processed in 3-5 cycles
 Jump: IFetch, Decode/OpFetch, DoOp (3)
 ALU: IFetch, Decode/OpFetch, DoOp, WriteReg (4)
 Load: IFetch, Decode, EffAddr, Cache, WriteReg (5)

 Addressing modes: (R) vs d(R)

Term: Processor Cycle Time

11

Instruction Execution

Mem
IR

+

PC

NPC
4

Instruction Fetch (IF)
from program memory
to instruction register

IR Mem [PC]
Increment PC

Instr Fetch

12

Instruction Execution.

Instr Fetch

Reg
File

sign
extend

A

Imm

B

Instr Decode

Inst
Mem

IR

+

PC

NPC4

A RegisterFile[IRrs]
B RegisterFile[IRrt]
Imm sign extend(IR15-0)

Instruction Decode & Operand Fetch (ID)

13

Instruction Execution..
Execution (EX)

Arithmetic Inst:
ALU-Out A op B
ALU-Out A op Imm
Load/Store Inst:
ALU-Out A + Imm
Branch Inst:
ALU-Out NPC + Imm
Jump Inst:
PC NPC 31-28 || IR 25-0 ||00

Imm

NPC
ALU-

outALU

Zero?

B

A

Cond.

Execution

14

Instruction Execution…
Memory (MEM)

Execution Memory

Imm

NPC
ALU
outALU

Zero?

Mem LMD
B

A

Cond

Store Instr
Mem[ALUOut] B

Load Instr
LMD Mem[ALUout]

15

Instruction Execution….
Write Back (WB)

ALU Inst
RegisterFile[rd] ALUout

Load Inst
RegisterFile[rt] LMD

Conditional Branch Inst
PC ALU-out if Cond
PC NPC otherwise

16

Inside the Processor

Mem
IR

+

PC

NPC

Reg
File

sign
extend

A

Imm

B

Inst Fetch
IF

Inst Decode
ID

4

ALU
outALU

Zero?

Mem LMD

Execution
EX

Memory
MEM

Cond

WB

17

Reality Check
 Problem: There could be many programs

running on a machine concurrently
 Sharing the resources of the computer
 Processor time
 Main memory

 They must be protected from each other
 One program should not be able to access the

variables of another
 This is typically done through Address Translation

18

Use of Main Memory by a Program
 Instructions (code, text)
 Data
 Statically allocated
 Stack allocated
 Heap allocated

text

data

stack

heap

0

232 - 1

19

Idea of Address Translation
 Each program is compiled to use addresses in the

range 0 .. MaxAddress (e.g., 0 .. 232 - 1)
 These addresses are not real, but only Virtual

Addresses
 They have to be translated into actual main memory

addresses
 The translation can be done to ensure that one

program can not access variables of another program
 Many programs in execution can then safely share

main memory
 Terminology: virtual address, physical address
 Memory Management Unit (MMU): The hardware that

does the address translation

20

Recall: Basic Computer Organization

Cache
Memory

I/O

Bus

I/OI/O

MMU

ALU Registers

CPU

Control

21

Agenda
1. Program execution: Compilation, Object files, Function call

and return, Address space, Data & its representation (4)
2. Computer organization: Memory, Registers, Instruction set

architecture, Instruction processing (6)
3. Virtual memory: Address translation, Paging (4)
4. Operating system: Processes, System calls,

Process management (6)
5. Pipelined processors: Structural, data and control hazards,

impact on programming (4)
6. Cache memory: Organization, impact on programming (5)
7. Program profiling (2)
8. File systems: Disk management, Name management,

Protection (4)
9. Parallel programming: Inter-process communication,

Synchronization, Mutual exclusion, Parallel architecture,
Programming with message passing using MPI (5)

