
High Performance Computing
Lecture 7

Matthew Jacob

Indian Institute of Science



2

Recall: C Program to a.out
% gcc program.c
 program.c: File containing program written in 

the C programming language
 a.out:  File containing executable equivalent 

program in machine language



3

Steps in gcc

cppprogram.c

Library files

cc1

as

ld

hello.s 

program.o

a.out

e.g., math.o, the math library

These are text files – you can read 
or write them with a text editor

These are object files 
(binary) – you can write 
programs to read them



4

 cpp: C pre-processor
 Pre-processing of #include, #define, …
 Output: an expanded C program

 cc1: C compiler
 Output: an equivalent assembly language program
 Almost like machine language but readable

 as: Assembler
 Output: an equivalent machine language program

 ld: Linkage editor

Steps in gcc



5

Sample program.c
#include<stdio.h> 
#include<math.h> 
float a[100];
main() { 

int i; 
float sum; 
for(i=0, sum=0.0; i<100; i++) { 

a[i] = sqrt(a[i]); 
sum += a[i]; 

} 
printf("sum = %4.2f\n", sum); 

} 



6

Corresponding program.s
.section .bss, 8, 0x00000003, 0, 8
.bss:

.section .lit8, 1, 0x30000002, 8, 8
.lit8:

.section .rodata, 1, 0x00000002, 0, 8
.rodata:

.section .bss

.origin 0x0

.align  0

.globl a

.type   a, stt_object

.size   a, 400

Assembler directives



7

Assembly Representation.
a:      # 0x0

.dynsym a       sto_default

.space  400

.section .text

# Program Unit: main
.ent main
.globl main

main:   # 0x0
.dynsym main    sto_default
.frame  $sp, 16, $31
.mask   0x80000000, -8
# gra_spill_temp_0 = 0
# gra_spill_temp_1 = 8
.loc    1 4 8



8

Assembly Representation..
#   1  #include<stdio.h>
#   2  #include<math.h>
#   3  float a[100];
#   4  main() {
.BB1.main:      # 0x0
.type   main, stt_func

lui $1,    %hi(%neg(%gp_rel(main)))      # [0]  main
addiu $sp,  $sp,      -16                                # [0]
addiu $1,    $1,       %lo(%neg(%gp_rel(main)))    # [1]  main
sf $gp,  0($sp)                            # [1]  gra_spill_temp_0
addu $gp,  $25,$1                           # [2]
lw $5,    %got_disp(a)($gp)        # [3]  a
.loc    1 7 5



9

Example: Function Call and Return
void A() {

…

B(5);

…

}

void B (int x) {

int a, b;

…

return();

}

Caller

Callee
Return

Function call
Parameter

Local variables

Return address



10

Example: Function Call and Return.
What must be done on a function call?

 Transfer control to start of function
 Remember return address
 Where?

What must be done on a function return?

 Transfer control back to return address

In a General Purpose Register?
No. The callee might have been compiled to 
use that register for  its variables.



11

In a variable (main memory location)?

Example: Function Call and Return..
What must be done on a function call?

 Transfer control to start of function
 Remember return address
 Where?

What must be done on a function return?

 Transfer control back to return address

No. That wouldn’t work for nested or 
recursive function calls



12

On a stack (in main memory)?

Example: Function Call and Return…
What must be done on a function call?

 Transfer control to start of function
 Remember return address
 Where?

What must be done on a function return?

 Transfer control back to return address

We could use the same stack for stack 
allocation of space for local variables and 
parameters of the function



13

Aside: What is a Stack?
A data structure; like a stack of books

Operations:

Push: Insert onto top

Pop:  Delete from top

Last In First Out (LIFO)

SP: Stack Pointer, which keeps track of the 
current top of stack element

3
-4
47

PUSH 47
POP; POP



14

Example: Function Call and Return….
What must be done on a function call?

 Pass parameters on stack
 Transfer control to start of function
 Remember return address
 Where?

 Allocate space for local variables on stack
What must be done on a function return?

 Pass return value (through stack)

 Clean up stack
 Transfer control back to return address

On a stack (in main memory)



15

Problem: Separate Compilation
 Consider our simple example of compiling a C 

program in program.c that calls a math library 
function

 % gcc program.c
 cc1 might use general purpose registers R3-R10 for 

the frequently used variables
 But, what if these registers are used by the math 

function, which was compiled previously?
 When the math function is called, the values in R3-

R10 would be over written and therefore lost
 Unless we save the values of those registers as part 

of the function call



16

Example: Function Call and Return
What must be done on a function call?

 Pass parameters on stack
 Transfer control to start of function
 Remember return address
 Where?

 Save register values
 Allocate space for local variables on stack

What must be done on a function return?
 Pass return value (through stack)
 Restore register values
 Clean up stack
 Transfer control back to return address

On a stack (in main memory)
on stack

from the stack


