
High Performance Computing
Lecture 7

Matthew Jacob

Indian Institute of Science

2

Recall: C Program to a.out
% gcc program.c
 program.c: File containing program written in

the C programming language
 a.out: File containing executable equivalent

program in machine language

3

Steps in gcc

cppprogram.c

Library files

cc1

as

ld

hello.s

program.o

a.out

e.g., math.o, the math library

These are text files – you can read
or write them with a text editor

These are object files
(binary) – you can write
programs to read them

4

 cpp: C pre-processor
 Pre-processing of #include, #define, …
 Output: an expanded C program

 cc1: C compiler
 Output: an equivalent assembly language program
 Almost like machine language but readable

 as: Assembler
 Output: an equivalent machine language program

 ld: Linkage editor

Steps in gcc

5

Sample program.c
#include<stdio.h>
#include<math.h>
float a[100];
main() {

int i;
float sum;
for(i=0, sum=0.0; i<100; i++) {

a[i] = sqrt(a[i]);
sum += a[i];

}
printf("sum = %4.2f\n", sum);

}

6

Corresponding program.s
.section .bss, 8, 0x00000003, 0, 8
.bss:

.section .lit8, 1, 0x30000002, 8, 8
.lit8:

.section .rodata, 1, 0x00000002, 0, 8
.rodata:

.section .bss

.origin 0x0

.align 0

.globl a

.type a, stt_object

.size a, 400

Assembler directives

7

Assembly Representation.
a: # 0x0

.dynsym a sto_default

.space 400

.section .text

Program Unit: main
.ent main
.globl main

main: # 0x0
.dynsym main sto_default
.frame $sp, 16, $31
.mask 0x80000000, -8
gra_spill_temp_0 = 0
gra_spill_temp_1 = 8
.loc 1 4 8

8

Assembly Representation..
1 #include<stdio.h>
2 #include<math.h>
3 float a[100];
4 main() {
.BB1.main: # 0x0
.type main, stt_func

lui $1, %hi(%neg(%gp_rel(main))) # [0] main
addiu $sp, $sp, -16 # [0]
addiu $1, $1, %lo(%neg(%gp_rel(main))) # [1] main
sf $gp, 0($sp) # [1] gra_spill_temp_0
addu $gp, $25,$1 # [2]
lw $5, %got_disp(a)($gp) # [3] a
.loc 1 7 5

9

Example: Function Call and Return
void A() {

…

B(5);

…

}

void B (int x) {

int a, b;

…

return();

}

Caller

Callee
Return

Function call
Parameter

Local variables

Return address

10

Example: Function Call and Return.
What must be done on a function call?

 Transfer control to start of function
 Remember return address
 Where?

What must be done on a function return?

 Transfer control back to return address

In a General Purpose Register?
No. The callee might have been compiled to
use that register for its variables.

11

In a variable (main memory location)?

Example: Function Call and Return..
What must be done on a function call?

 Transfer control to start of function
 Remember return address
 Where?

What must be done on a function return?

 Transfer control back to return address

No. That wouldn’t work for nested or
recursive function calls

12

On a stack (in main memory)?

Example: Function Call and Return…
What must be done on a function call?

 Transfer control to start of function
 Remember return address
 Where?

What must be done on a function return?

 Transfer control back to return address

We could use the same stack for stack
allocation of space for local variables and
parameters of the function

13

Aside: What is a Stack?
A data structure; like a stack of books

Operations:

Push: Insert onto top

Pop: Delete from top

Last In First Out (LIFO)

SP: Stack Pointer, which keeps track of the
current top of stack element

3
-4
47

PUSH 47
POP; POP

14

Example: Function Call and Return….
What must be done on a function call?

 Pass parameters on stack
 Transfer control to start of function
 Remember return address
 Where?

 Allocate space for local variables on stack
What must be done on a function return?

 Pass return value (through stack)

 Clean up stack
 Transfer control back to return address

On a stack (in main memory)

15

Problem: Separate Compilation
 Consider our simple example of compiling a C

program in program.c that calls a math library
function

 % gcc program.c
 cc1 might use general purpose registers R3-R10 for

the frequently used variables
 But, what if these registers are used by the math

function, which was compiled previously?
 When the math function is called, the values in R3-

R10 would be over written and therefore lost
 Unless we save the values of those registers as part

of the function call

16

Example: Function Call and Return
What must be done on a function call?

 Pass parameters on stack
 Transfer control to start of function
 Remember return address
 Where?

 Save register values
 Allocate space for local variables on stack

What must be done on a function return?
 Pass return value (through stack)
 Restore register values
 Clean up stack
 Transfer control back to return address

On a stack (in main memory)
on stack

from the stack

