
High Performance Computing
Lecture 8

Matthew Jacob

Indian Institute of Science

2

Example: Function Call and Return
What must be done on a function call?

 Pass parameters on stack
 Transfer control to start of function
 Remember return address
 Where?

 Save register values
 Allocate space for local variables on stack

What must be done on a function return?
 Pass return value (through stack)
 Restore register values
 Clean up stack
 Transfer control back to return address

On a stack (in main memory)
on stack

from the stack

3

Implementing a Stack in Memory
 Use one register as Stack Pointer, say R29
 It could point at either
 The current top of stack value, or
 The memory location for the next push onto the stack

 Decide whether stack grows “up” or “down” in
memory
 up: grows into higher memory addresses
 down: grows into lower memory addresses

4

Implementing a Stack in Memory.

0x1234
0x1235
0x1236
0x1237

R29 0x1237

PushByte: SUBI R29, R29, 1
SB 0(R29), Rs

PopByte: LB Rd, 0(R29)
ADDI R29, R29, 1

Example: Growing down (into lower addresses) in memory

R29 pointing at current top of stack element

5

Function Call and Return

void A() {

…

B(5);

…

}

void B (int x) {

int a, b;

…

return();

}

ADDI R1, R0, 5

ADDI R29, R29, 4

SW 0(R29), R1

B:

…
5 (int x)

Function Call/Return Stack

JAL B

6

R31 PC + 8
PC R2

JALR R2JAL, JALRJump and
Link

SYSCALLSYSCALLSystem call

PC
(PC)31-28|| target26||00

J target26J, JRJump

If R2 < 0,
PC PC + 4 -16

BLTZ R2, -16BEQ, BNE,
BGEZ, BLEZ,
BLTZ, BGTZ

Conditional
Branch

MeaningExampleMnemonics

Recall: MIPS 1 JAL instruction

7

Function Call and Return

void A() {

…

B(5);

…

}

void B (int x) {

int a, b;

…

return();

}

ADDI R1, R0, 5

ADDI R29, R29, 4

SW 0(R29), R1

JAL B

ADDI R29, R29, 4

SW 0(R29), R31

B: …
5 (int x)

Return address

Local int a

Local int b

ADDI R29, R29, 8

…

SUBI R29, R29, 16
LW R31, 8(R29)

JR R31

Function Call/Return Stack

8

Use of Main Memory by a Program
 Instructions (code, text)
 Data used in different ways
 Stack allocated
 Heap allocated
 Statically allocated

text

data

stack

heap
Use of memory addresses

9

Stack Allocated Variables
 Space allocated on function call, reclaimed

on return
 Addresses calculated and used by compiler,

relative to the top of stack, or some other
base register associated with the stack

 Growth of stack area is thus managed by the
program, as generated by the compiler

10

Heap Allocated Variables
 Managed by a memory allocation library
 Functions like malloc, realloc ,free
 Get `linked’ (joined) to your program if they

are called
 Executed just like other program functions
 What about growth of the heap area?
 Managed by the library functions

