
High Performance Computing
Lecture 8

Matthew Jacob

Indian Institute of Science

2

Example: Function Call and Return
What must be done on a function call?

 Pass parameters on stack
 Transfer control to start of function
 Remember return address
 Where?

 Save register values
 Allocate space for local variables on stack

What must be done on a function return?
 Pass return value (through stack)
 Restore register values
 Clean up stack
 Transfer control back to return address

On a stack (in main memory)
on stack

from the stack

3

Implementing a Stack in Memory
 Use one register as Stack Pointer, say R29
 It could point at either
 The current top of stack value, or
 The memory location for the next push onto the stack

 Decide whether stack grows “up” or “down” in
memory
 up: grows into higher memory addresses
 down: grows into lower memory addresses

4

Implementing a Stack in Memory.

0x1234
0x1235
0x1236
0x1237

R29 0x1237

PushByte: SUBI R29, R29, 1
SB 0(R29), Rs

PopByte: LB Rd, 0(R29)
ADDI R29, R29, 1

Example: Growing down (into lower addresses) in memory

R29 pointing at current top of stack element

5

Function Call and Return

void A() {

…

B(5);

…

}

void B (int x) {

int a, b;

…

return();

}

ADDI R1, R0, 5

ADDI R29, R29, 4

SW 0(R29), R1

B:

…
5 (int x)

Function Call/Return Stack

JAL B

6

R31  PC + 8
PC  R2

JALR R2JAL, JALRJump and
Link

SYSCALLSYSCALLSystem call

PC 
(PC)31-28|| target26||00

J target26J, JRJump

If R2 < 0,
PC  PC + 4 -16

BLTZ R2, -16BEQ, BNE,
BGEZ, BLEZ,
BLTZ, BGTZ

Conditional
Branch

MeaningExampleMnemonics

Recall: MIPS 1 JAL instruction

7

Function Call and Return

void A() {

…

B(5);

…

}

void B (int x) {

int a, b;

…

return();

}

ADDI R1, R0, 5

ADDI R29, R29, 4

SW 0(R29), R1

JAL B

ADDI R29, R29, 4

SW 0(R29), R31

B: …
5 (int x)

Return address

Local int a

Local int b

ADDI R29, R29, 8

…

SUBI R29, R29, 16
LW R31, 8(R29)

JR R31

Function Call/Return Stack

8

Use of Main Memory by a Program
 Instructions (code, text)
 Data used in different ways
 Stack allocated
 Heap allocated
 Statically allocated

text

data

stack

heap
Use of memory addresses

9

Stack Allocated Variables
 Space allocated on function call, reclaimed

on return
 Addresses calculated and used by compiler,

relative to the top of stack, or some other
base register associated with the stack

 Growth of stack area is thus managed by the
program, as generated by the compiler

10

Heap Allocated Variables
 Managed by a memory allocation library
 Functions like malloc, realloc ,free
 Get `linked’ (joined) to your program if they

are called
 Executed just like other program functions
 What about growth of the heap area?
 Managed by the library functions

