High Performance Computing
Lecture 9

Matthew Jacob

Indian Institute of Science

M I PS 1 FUﬂCtIOn Ca” Function Call/Return Stack

ADDI R29, R29, 4

SW 0(R29), R31
ADDI R29, R29, 8

SUBI R29, R29, 16
LW R31, 8(R29)

JR R31

ADDI R1, RO, 5
ADDI R29, R29, 4
SW 0(R29), R1

JAL B

5 (intx

Return address

Local int a

Local int b

<
<

-

Use of Main Memory by a Program

Instructions (code, text)

Data

o Statically allocated
o Stack allocated

o Heap allocated

0

text

data

stack

2321

heap

MIPS 1 Instruction Set

Conditional branch instructions
Floating point

MIPS 1 Branch Instructions

Mnemonics | Example Meaning
Conditional | BEQ, BNE, BLTZR2,-16 |IfR2<0,
Branch | BGEZ, BLEZ, PC ¢ PC + 4 -16
BLTZ, BGTZ

== 1= >=0 <=0 <0 >0
What about a condition like R1 >= R2
You could use the BGEZ instruction
Idea: Rewrite the conditionas (R1-R2) >= 0
SUB R3, Rl1, R2 [R3<«R1 - R2
BGEZ RS, target [1If R3 >= 0 goto target
Problem: Possibility of overflow

MIPS 1 Compare Instructions

Mnemonics |Example Meaning
Compare | SLT, SLTU, |SLT R1,R2,R3 |R1l¢ 1ifR2<R3

SLTI, SLTIU < 0 otherwise
S:Set, LT:Iflessthan; I: Immediate; U: Unsigned

If (R1 >= R2) thenpart;
else elsepart
SLT R3, R, R2 /R3«1 if R1 < R2
[1If R3==0 goto thenpart
BEQ R3, RO, thenpart

MIPS 1 Floating Point

Assume that there is a separate floating point
register file

0 32 32b floating point registers FO-F31

o A double (64b floating point value) occupies 2
registers

Even-odd pair, such as FO,F1
Addressed as FO

Additional instructions

o Loads: LF (load float), LD (load double)
o Arithmetic: ADDF (add float), ADDD (add double)

Rationale for Separate FP Register File?

ALU ALU

MIPS 1 Floating Point Code Example

double AJ1024], B[1024],
for (1=0; <1024, i++) A[i] = A[i] + BJi];

Loop: LD FO, O(R1)
LD F2, O(R2)
ADDD F4, FO, F2
SD 0(R1), F4
ADDI R1, R1, 8
ADDI R2, R2, 8

BNE R1, R3, Loop

Basic Computer Organization

CPU

Registers

Control

10

Steps In Instruction Processing

Fetch instruction from Main Memory to CPU

o Getinstruction whose address is in PC from memory
into IR

o Increment PC

Decode the instruction
o Understand instruction, addressing modes, etc
o Calculate memory addresses and fetch operands

Execute the required operation
o Do the required operation

Write the result of the instruction

11

Steps In Instruction Execution

Fetch instruction from memory to processor
. IR = Memory[PC]; Increment PC

Decode instruction and get its operands
. Decode; Operands from registers/memory to ALU

Execute the operation
. Trigger appropriate functional hardware
. If load/store, send access request to memory

Write back the result
. To destination register/memory

12

Timeline of events (CISC)

Processor/Memory Speed disparity ~2 orders of magnitude

————

PC to memory

o Write result
Instruction In IR
Op done
PC++; Decode
Op2 fetched

Opl address calculation

Op2 address calculation

Opl1 fetched

13

Timeline of events (RISC)

———r

PC to memory

o Write result
Instruction in IR
Op done
PC++:; Decode
Op2 fetched

Opl address calculation

Opl1 fetched

14

Aside: CISC vs RISC Instructions

Ali++]1=A[i]+B[i]; CISC Code:
add (R3)+, (R3), (R4)

B[1] =B[1-] -1; sub (R4) -, (R4), 1
RISC Code: Instructions Memory Accesses
LW R1, O(R3) RISC - 8 RISC - 4
LW R2, O(R4) CISC -2 CISC -5

ADD R5, R1, R2
SUBI R2, R2, 1
SW O0(R3), R5
SW 0O(R4), R2
ADDI R3, R3, 4
SUBI R4, R4, 4

15

We will assume that ...

Activity Is overlapped in time where possible
PC increment and instruction fetch from memory?
Instruction decode and effective address calculation

Load-store ISA: the only instructions that take
operands from memory are loads & stores

Main memory delays are not typically seen by the
processor
Otherwise the timeline is dominated by them

There is some hardware mechanism through which
MOosSt memory access requests can be satisfied at
processor speeds (cache memory)

16

