
High Performance Computing
Lecture 9

Matthew Jacob

Indian Institute of Science

2

MIPS 1 Function Call

void A() {

…

B(5);

…

}

void B (int x) {

int a, b;

…

return();

}

ADDI R1, R0, 5

ADDI R29, R29, 4

SW 0(R29), R1

JAL B

ADDI R29, R29, 4

SW 0(R29), R31

B: …
5 (int x)

Return address

Local int a

Local int b

ADDI R29, R29, 8

…

SUBI R29, R29, 16
LW R31, 8(R29)

JR R31

Function Call/Return Stack

3

Use of Main Memory by a Program
 Instructions (code, text)
 Data
 Statically allocated
 Stack allocated
 Heap allocated

text

data

stack

heap

0

232 - 1

4

MIPS 1 Instruction Set
1. Conditional branch instructions
2. Floating point

5

MIPS 1 Branch Instructions

= = != >= 0 <= 0 < 0 > 0
What about a condition like R1 >= R2
You could use the BGEZ instruction
Idea: Rewrite the condition as (R1 – R2) >= 0

SUB R3, R1, R2 / R3 R1 - R2
BGEZ R3, target / if R3 >= 0 goto target

Problem: Possibility of overflow

If R2 < 0,
PC PC + 4 -16

BLTZ R2, -16BEQ, BNE,
BGEZ, BLEZ,
BLTZ, BGTZ

Conditional
Branch

MeaningExampleMnemonics

6

MIPS 1 Compare Instructions

S: Set, LT: If less than; I: Immediate; U: Unsigned
if (R1 >= R2) thenpart;
else elsepart

SLT R3, R1, R2 / R3 1 if R1 < R2
/ if R3 = = 0 goto thenpart

BEQ R3, R0, thenpart

R1 1 if R2 < R3
 0 otherwise

SLT R1, R2, R3SLT, SLTU,
SLTI, SLTIU

Compare

MeaningExampleMnemonics

7

MIPS 1 Floating Point
 Assume that there is a separate floating point

register file
 32 32b floating point registers F0-F31
 A double (64b floating point value) occupies 2

registers
 Even-odd pair, such as F0,F1
 Addressed as F0

 Additional instructions
 Loads: LF (load float), LD (load double)
 Arithmetic: ADDF (add float), ADDD (add double)

8

Rationale for Separate FP Register File?

ALU

FP Adder

FP Multiplier

64
Registers

32 Integer
Registers

32 FP
Registers

ALU

FP Adder

FP Multiplier

9

MIPS 1 Floating Point Code Example
double A[1024], B[1024];
for (i=0; i<1024; i++) A[i] = A[i] + B[i];

Loop: LD F0, 0(R1)
LD F2, 0(R2)

ADDD F4, F0, F2

SD 0(R1), F4

ADDI R1, R1, 8

ADDI R2, R2, 8
BNE R1, R3, Loop

10

Basic Computer Organization

Cache

Main
Memory

I/O

Bus

I/OI/O

MMU

ALU Registers

CPU

Control

11

Steps in Instruction Processing
1. Fetch instruction from Main Memory to CPU

 Get instruction whose address is in PC from memory
into IR

 Increment PC
2. Decode the instruction

 Understand instruction, addressing modes, etc
 Calculate memory addresses and fetch operands

3. Execute the required operation
 Do the required operation

4. Write the result of the instruction

12

Steps in Instruction Execution
 Fetch instruction from memory to processor

• IR = Memory[PC]; Increment PC
 Decode instruction and get its operands

• Decode; Operands from registers/memory to ALU
 Execute the operation

• Trigger appropriate functional hardware
• If load/store, send access request to memory

 Write back the result
• To destination register/memory

13

Timeline of events (CISC)

PC to memory

Instruction in IR

PC++; Decode

Op1 address calculation

Op1 fetched
Op2 address calculation

Op2 fetched

Op done
Write result

Processor/Memory Speed disparity ~2 orders of magnitude

14

Timeline of events (RISC)

PC to memory

Instruction in IR

PC++; Decode

Op1 address calculation

Op1 fetched

Op2 fetched

Op done
Write result

15

Aside: CISC vs RISC Instructions

RISC Code:
LW R1, 0(R3)
LW R2, 0(R4)
ADD R5, R1, R2
SUBI R2, R2, 1
SW 0(R3), R5
SW 0(R4), R2
ADDI R3, R3, 4
SUBI R4, R4, 4

CISC Code:
add (R3)+, (R3), (R4)
sub (R4) -, (R4), 1

A[i++] = A[i] + B[i];

B[i] = B[i--] - 1;

Memory Accesses
RISC - 4
CISC - 5

Instructions
RISC - 8
CISC - 2

16

We will assume that …
1. Activity is overlapped in time where possible

• PC increment and instruction fetch from memory?
• Instruction decode and effective address calculation

2. Load-store ISA: the only instructions that take
operands from memory are loads & stores

3. Main memory delays are not typically seen by the
processor

• Otherwise the timeline is dominated by them
• There is some hardware mechanism through which

most memory access requests can be satisfied at
processor speeds (cache memory)

