
High Performance Computing
Lecture 9

Matthew Jacob

Indian Institute of Science

2

MIPS 1 Function Call

void A() {

…

B(5);

…

}

void B (int x) {

int a, b;

…

return();

}

ADDI R1, R0, 5

ADDI R29, R29, 4

SW 0(R29), R1

JAL B

ADDI R29, R29, 4

SW 0(R29), R31

B: …
5 (int x)

Return address

Local int a

Local int b

ADDI R29, R29, 8

…

SUBI R29, R29, 16
LW R31, 8(R29)

JR R31

Function Call/Return Stack

3

Use of Main Memory by a Program
 Instructions (code, text)
 Data
 Statically allocated
 Stack allocated
 Heap allocated

text

data

stack

heap

0

232 - 1

4

MIPS 1 Instruction Set
1. Conditional branch instructions
2. Floating point

5

MIPS 1 Branch Instructions

= = != >= 0 <= 0 < 0 > 0
What about a condition like R1 >= R2
You could use the BGEZ instruction
Idea: Rewrite the condition as (R1 – R2) >= 0

SUB R3, R1, R2 / R3  R1 - R2
BGEZ R3, target / if R3 >= 0 goto target

Problem: Possibility of overflow

If R2 < 0,
PC  PC + 4 -16

BLTZ R2, -16BEQ, BNE,
BGEZ, BLEZ,
BLTZ, BGTZ

Conditional
Branch

MeaningExampleMnemonics

6

MIPS 1 Compare Instructions

S: Set, LT: If less than; I: Immediate; U: Unsigned
if (R1 >= R2) thenpart;
else elsepart

SLT R3, R1, R2 / R3  1 if R1 < R2
/ if R3 = = 0 goto thenpart

BEQ R3, R0, thenpart

R1 1 if R2 < R3
 0 otherwise

SLT R1, R2, R3SLT, SLTU,
SLTI, SLTIU

Compare

MeaningExampleMnemonics

7

MIPS 1 Floating Point
 Assume that there is a separate floating point

register file
 32 32b floating point registers F0-F31
 A double (64b floating point value) occupies 2

registers
 Even-odd pair, such as F0,F1
 Addressed as F0

 Additional instructions
 Loads: LF (load float), LD (load double)
 Arithmetic: ADDF (add float), ADDD (add double)

8

Rationale for Separate FP Register File?

ALU

FP Adder

FP Multiplier

64
Registers

32 Integer
Registers

32 FP
Registers

ALU

FP Adder

FP Multiplier

9

MIPS 1 Floating Point Code Example
double A[1024], B[1024];
for (i=0; i<1024; i++) A[i] = A[i] + B[i];

Loop: LD F0, 0(R1)
LD F2, 0(R2)

ADDD F4, F0, F2

SD 0(R1), F4

ADDI R1, R1, 8

ADDI R2, R2, 8
BNE R1, R3, Loop

10

Basic Computer Organization

Cache

Main
Memory

I/O

Bus

I/OI/O

MMU

ALU Registers

CPU

Control

11

Steps in Instruction Processing
1. Fetch instruction from Main Memory to CPU

 Get instruction whose address is in PC from memory
into IR

 Increment PC
2. Decode the instruction

 Understand instruction, addressing modes, etc
 Calculate memory addresses and fetch operands

3. Execute the required operation
 Do the required operation

4. Write the result of the instruction

12

Steps in Instruction Execution
 Fetch instruction from memory to processor

• IR = Memory[PC]; Increment PC
 Decode instruction and get its operands

• Decode; Operands from registers/memory to ALU
 Execute the operation

• Trigger appropriate functional hardware
• If load/store, send access request to memory

 Write back the result
• To destination register/memory

13

Timeline of events (CISC)

PC to memory

Instruction in IR

PC++; Decode

Op1 address calculation

Op1 fetched
Op2 address calculation

Op2 fetched

Op done
Write result

Processor/Memory Speed disparity ~2 orders of magnitude

14

Timeline of events (RISC)

PC to memory

Instruction in IR

PC++; Decode

Op1 address calculation

Op1 fetched

Op2 fetched

Op done
Write result

15

Aside: CISC vs RISC Instructions

RISC Code:
LW R1, 0(R3)
LW R2, 0(R4)
ADD R5, R1, R2
SUBI R2, R2, 1
SW 0(R3), R5
SW 0(R4), R2
ADDI R3, R3, 4
SUBI R4, R4, 4

CISC Code:
add (R3)+, (R3), (R4)
sub (R4) -, (R4), 1

A[i++] = A[i] + B[i];

B[i] = B[i--] - 1;

Memory Accesses
RISC - 4
CISC - 5

Instructions
RISC - 8
CISC - 2

16

We will assume that …
1. Activity is overlapped in time where possible

• PC increment and instruction fetch from memory?
• Instruction decode and effective address calculation

2. Load-store ISA: the only instructions that take
operands from memory are loads & stores

3. Main memory delays are not typically seen by the
processor

• Otherwise the timeline is dominated by them
• There is some hardware mechanism through which

most memory access requests can be satisfied at
processor speeds (cache memory)

