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Agenda
1. Program execution: Compilation, Object files, Function call            

and return, Address space, Data & its representation (4)
2. Computer organization: Memory, Registers, Instruction set 

architecture,  Instruction processing (6)
3. Virtual memory: Address translation, Paging (4)
4. Operating system: Processes, System calls,                             

Process management (6)
5. Pipelined processors: Structural, data and control hazards,

impact on programming (4)
6. Cache memory: Organization, impact on programming (5)
7. Program profiling (2)
8. File systems: Disk management, Name management,          

Protection (4)
9. Parallel programming: Inter-process communication, 

Synchronization, Mutual exclusion, Parallel architecture, 
Programming with message passing using MPI (5)
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Computer Organization: Software
 Hardware resources of computer system are 

shared by programs in execution
 Operating System: Special software that 

manages this sharing
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Operating Systems (OS)
Examples
 Unix 
 Linux
 Apple Mac OS
 Microsoft Windows
 Google Chrome OS

AIX, HP-UX, Solaris
Fedora, openSUSE, Ubuntu, Debian

Mac OS X Snow Leopard
Windows 7, Vista, XP
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Computer Organization: Software
 Hardware resources of computer system are 

shared by programs in execution
 Operating System: Special software that 

manages this sharing
 Process: A program in execution
 i.e., present in main memory and being executed
 On Unix systems, you can use ps to get 

information about the current status of processes
%   ps

Shell prompt
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Computer Organization: Software
 Hardware resources of computer system are 

shared by programs in execution
 Operating System: Special software that 

manages this sharing
 Process: A program in execution
 Shell: A command interpreter, through which 

you interact with the computer system
 Examples of Unix shells: csh, bash
 A program; just another program
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% ps
PID     TTY       TIME      CMD

15459  pts/10   00:00:00   bash
15491  pts/10   00:00:00   ps
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% ps -a
PID    TTY      TIME     CMD

6358  pts/4    00:00:00  pine
15538 pts/10  00:00:00  ps
20252 pts/2    00:00:01  pine
31066 pts/5    00:00:01  emacs-x
31072 pts/5    00:00:00  xterm
31084 pts/5    00:00:00  xdvi-xaw3d.bin

% ps -l
F S  UID  PID  PPID  C PRI  NI  ADDR  SZ  WCHAN  TTY TIME  CMD
0 S  539 15459 15458  0  76   0  - 16517 wait    pts/10   00:00:00 bash
0 R  539 15539 15459  0  78   0  - 15876  - pts/10   00:00:00 ps
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Operating System, Processes, Hardware
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Operating System, Processes, Hardware
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Operating System, Processes, Hardware
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System Calls
 How a process gets the operating system to 

do something for it
 Interface or API (Application Programming 

Interface) for interaction with the operating system
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System Calls
 How a process gets the operating system to 

do something for it
 Interface or API (Application Programming 

Interface) for interaction with the operating system
 Examples: Operations on files

 creat(): to create a new file
 unlink(): to remove a file
 open(): to open a file for reading and/or writing
 read(): to read data from an open file into a variable
 write(): to write data into an open file
 lseek(): to change the current pointer into the open file
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System Calls
 How a process gets the operating system to 

do something for it
 Interface or API (Application Programming 

Interface) for interaction with the operating system
 Examples: Operations on processes
 fork(): to create a new process
 Terminology: parent process calls fork() which 

causes a child process to be created
 Both parent and child processes continue to 

execute from that point in the program
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System Calls
 How a process gets the operating system to 

do something for it
 Interface or API (Application Programming 

Interface) for interaction with the operating system
 Examples: Operations on processes
 fork(): to create a new process
 exec(): to change the memory image of a process
 e,g, to change the program that a process is 

executing
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fork( ) and exec( )
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retval = fork();
if (retval == 0) {

/* child */

} else {
/* parent */

}

exec(…);



19

text

data

heap

stack

text

data

text

Parent Process Child Process

stack

fork( ) and exec( )



20

System Calls
 How a process gets the operating system to 

do something for it
 Interface or API (Application Programming 

Interface) for interaction with the operating system
 Examples: Operations on processes
 fork(): to create a new process
 exec(): to change the memory image of a process
 exit(): to terminate
 wait(): to make parent sleep until child terminates
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System Calls
 How a process gets the operating system to 

do something for it
 Interface or API (Application Programming 

Interface) for interaction with the operating system
 Examples: Operations on memory
 sbrk: can be used by malloc() to increase size of 

the heap
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System Calls
 How a process gets the operating system to 

do something for it
 Interface or API (Application Programming 

Interface) for interaction with the operating system
 Examples: Operations on files, processes, 

memory, etc
 When a process is executing in a system call, 

it is actually executing Operating System 
code
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