
High Performance Computing
Lecture 11

Matthew Jacob

Indian Institute of Science

2

Agenda
1. Program execution: Compilation, Object files, Function call

and return, Address space, Data & its representation (4)
2. Computer organization: Memory, Registers, Instruction set

architecture, Instruction processing (6)
3. Virtual memory: Address translation, Paging (4)
4. Operating system: Processes, System calls,

Process management (6)
5. Pipelined processors: Structural, data and control hazards,

impact on programming (4)
6. Cache memory: Organization, impact on programming (5)
7. Program profiling (2)
8. File systems: Disk management, Name management,

Protection (4)
9. Parallel programming: Inter-process communication,

Synchronization, Mutual exclusion, Parallel architecture,
Programming with message passing using MPI (5)

3

Computer Organization: Hardware

Cache
Memory

I/O

Bus

I/OI/O

MMU

ALU Registers

CPU

Control

4

Computer Organization: Software
 Hardware resources of computer system are

shared by programs in execution
 Operating System: Special software that

manages this sharing

5

Operating Systems (OS)
Examples
 Unix
 Linux
 Apple Mac OS
 Microsoft Windows
 Google Chrome OS

AIX, HP-UX, Solaris
Fedora, openSUSE, Ubuntu, Debian

Mac OS X Snow Leopard
Windows 7, Vista, XP

6

Computer Organization: Software
 Hardware resources of computer system are

shared by programs in execution
 Operating System: Special software that

manages this sharing
 Process: A program in execution
 i.e., present in main memory and being executed
 On Unix systems, you can use ps to get

information about the current status of processes
% ps

Shell prompt

7

Computer Organization: Software
 Hardware resources of computer system are

shared by programs in execution
 Operating System: Special software that

manages this sharing
 Process: A program in execution
 Shell: A command interpreter, through which

you interact with the computer system
 Examples of Unix shells: csh, bash
 A program; just another program

8

% ps
PID TTY TIME CMD

15459 pts/10 00:00:00 bash
15491 pts/10 00:00:00 ps

9

% ps -a
PID TTY TIME CMD

6358 pts/4 00:00:00 pine
15538 pts/10 00:00:00 ps
20252 pts/2 00:00:01 pine
31066 pts/5 00:00:01 emacs-x
31072 pts/5 00:00:00 xterm
31084 pts/5 00:00:00 xdvi-xaw3d.bin

% ps -l
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
0 S 539 15459 15458 0 76 0 - 16517 wait pts/10 00:00:00 bash
0 R 539 15539 15459 0 78 0 - 15876 - pts/10 00:00:00 ps

10

Cache
Memory

I/O

Bus

I/OI/O

MMU

ALU Registers

CPU

Control

Operating System, Processes, Hardware

11

Operating System, Processes, Hardware

12

Operating System, Processes, Hardware

Hardware

Processes

System Calls
Operating System

13

Operating System, Processes, Hardware

Hardware

Processes

System Calls
OS Kernel

14

System Calls
 How a process gets the operating system to

do something for it
 Interface or API (Application Programming

Interface) for interaction with the operating system

15

System Calls
 How a process gets the operating system to

do something for it
 Interface or API (Application Programming

Interface) for interaction with the operating system
 Examples: Operations on files

 creat(): to create a new file
 unlink(): to remove a file
 open(): to open a file for reading and/or writing
 read(): to read data from an open file into a variable
 write(): to write data into an open file
 lseek(): to change the current pointer into the open file

16

System Calls
 How a process gets the operating system to

do something for it
 Interface or API (Application Programming

Interface) for interaction with the operating system
 Examples: Operations on processes
 fork(): to create a new process
 Terminology: parent process calls fork() which

causes a child process to be created
 Both parent and child processes continue to

execute from that point in the program

17

System Calls
 How a process gets the operating system to

do something for it
 Interface or API (Application Programming

Interface) for interaction with the operating system
 Examples: Operations on processes
 fork(): to create a new process
 exec(): to change the memory image of a process
 e,g, to change the program that a process is

executing

18

fork() and exec()

text

data

heap

stack

Parent Process Child Process

text

data

heap

stack

retval = fork();
if (retval == 0) {

/* child */

} else {
/* parent */

}

exec(…);

19

text

data

heap

stack

text

data

text

Parent Process Child Process

stack

fork() and exec()

20

System Calls
 How a process gets the operating system to

do something for it
 Interface or API (Application Programming

Interface) for interaction with the operating system
 Examples: Operations on processes
 fork(): to create a new process
 exec(): to change the memory image of a process
 exit(): to terminate
 wait(): to make parent sleep until child terminates

21

System Calls
 How a process gets the operating system to

do something for it
 Interface or API (Application Programming

Interface) for interaction with the operating system
 Examples: Operations on memory
 sbrk: can be used by malloc() to increase size of

the heap

22

System Calls
 How a process gets the operating system to

do something for it
 Interface or API (Application Programming

Interface) for interaction with the operating system
 Examples: Operations on files, processes,

memory, etc
 When a process is executing in a system call,

it is actually executing Operating System
code

23

Operating System, Processes, Hardware

Hardware

Processes

System Calls
Operating System

