
High Performance Computing
Lecture 14

Matthew Jacob

Indian Institute of Science



2

Page Fault
 Situation where virtual address generated 

by processor is not available in main 
memory

 Detected on attempt to translate address
 Page Table entry is invalid

 Must be `handled’ by operating system
1. Identify slot in main memory to be used
2. Get page contents from disk
3. Update page table entry

 Data can then be provided to the processor



3

Page Fault Handler
1. Identify slot in main memory to be used
2. Get page contents from disk
3. Update page table entry

 It must keep track of the available, unused 
physical pages, maybe in a free list

 What if the free list is empty?
 i.e., all main memory physical pages are already 

mapped to virtual pages
 The page fault handler must then identify a page 

to be replaced (evicted) from main memory



4

Page Replacement Policies
 Question: How does the page fault handler 

decide which main memory page to replace 
when there is a page fault?
 How important is this decision?
 In the worst case, the policy could always replace 

the page that is going to be accessed by the 
processor next
 Each of these would require copying the virtual 

page from hard disk to main memory



5

Aside: Disk Access Speed
 We saw that there is a speed disparity of about 

2 orders of magnitude between Processor 
(nsec) and Main Memory (~100 ns)
 Recall: nano 10-9

 Hard disk
 Remembers things by the state of magnetic material
 Disk is a mechanical device: motors rotating a firm plate 

coated with magnetic material
 Aside: Computer noises
 Reading a page from hard disk could take -msecs

(milli:10-3) if not longer 
 i.e., 104 times slower than main memory!



6

Page Replacement Policies
 Question: How does the page fault handler 

decide which main memory page to replace 
when there is a page fault?
 How important is this decision?
 In the worst case, the policy could always replace 

the page that is going to be accessed by the 
processor next

 So, the OS page fault handler code must be 
written based on a realistic model of how 
programs behave with respect to memory



7

Page Replacement Policies
Principle of Locality of Reference
 A commonly believed/seen program property
 If memory address A is referenced at time t, then 

it and its neighbouring memory locations are likely 
to be referenced in the near future

Temporal Locality 
of reference

Spatial Locality 
of reference



8

Locality of Reference
 Based on your experience, why do you expect 

that programs will display locality of reference?

Instructions

Data

Same address
(temporal)

Neighbours
(spatial)

Small loop Sequential code

Local variable Stepping through 
array

Function Loop

Loop index



9

Page Replacement Policies
 For a program that displays good locality of 

reference what would be a good page 
replacement policy?

now
A page fault occurs on reference to page Px

Candidates: P1, P2, P3,…Pn, all the pages in main memory

P1P5…

Pick from them the page that was referenced least recently

P1

Which page should be replaced from memory to make 
space for page Px?



10

Least Recently Used (LRU) Policy
 Keep track of when each page was last used
 With a timestamp
 LRU page: the one with the smallest timestamp 
 Requires a large number of comparisons

 Or, keep track of the stack of recently used 
pages
 LRU page: at the bottom of the stack
 Stack must be updated on every memory access

 So, LRU might be too expensive in practise


