High Performance Computing
Lecture 17/

Matthew Jacob

Indian Institute of Science



Some Possible Process States

A process could be Waiting for something to
happen

o Example: A parent process that made the wait()

system call is waiting (sleeping) for its child
process to terminate

A process could be Ready for the OS to
cause it to run

Running, Waiting, Ready



Process Management

What should the OS do when a process does
something that will involve a long time?

o e.g., Anything that involves a hard disk access
(fille read/write operation, page fault, ...)

If it does nothing, the processor will be idle
for billions of cycles

o The processor could have executed billions of
Instructions instead during that time



Process Management

OS should try to maximize processor
utilization

o utilization: fraction of time that the processor is
busy

OS could change status of that process to
"Waiting’ and make another process
"Running’

Question: Which other process?

o Determined by the process scheduler



Process Scheduler

The part of the OS that manages the sharing
of CPU time among processes

Possible considerations that the scheduler
could use in making scheduling decisions

o Minimize average program execution time
o Fairness to all the programs in execution



Process Scheduling Policies

ldea 1: Let the currently Running process
continue to do so until it does something that
Involves a long time

o Then switch to one of the Ready processes

o But what if the currently Running process is
executing an infinite loop

while (1) ; [* a simple infinite loop */
2o No other process would ever get to run if the OS
uses ldea 1

o This is an example of a Non-preemptive policy
o It does not seem to be very fair to other processes



Process Scheduling Policies

Preemptive vs Non-preemptive

g

Preemptive policy: one where the OS preempts’
the running process from the CPU even though it
IS not waiting for something

ldea: give a process some maximum amount of
CPU time before preempting it, for the benefit of
the other processes

CPU time slice: maximum amount of CPU time
allotted to a process before preempting it from the
CPU



Process State Transition Diagram

preempted or
yields CPU

scheduled

waiting for an event
to happen

the awaited event
happens



Context Switch

When the OS changes which process is
currently running on the CPU

The switch takes some time, as it involves
replacing the hardware state of the previously
running process with that of the newly
scheduled process

o Saving HW state of previously running process
o Restoring HW state of newly scheduled process

Amount of time would help in deciding what a
reasonable CPU timeslice value would be



Non-Preemptive Scheduling Policies

First Come First Served (FCFS)

= |dea: Maintain a queue of ready processes

= Queue: a data structure with 2 operations
Insert: Add a new process to the back of the queue
Delete: Remove the process from the front of the

queue

front |P,

P,

Ps

back

= Schedule next the process from the front of

the ReadyQ

10



Non-Preemptive Scheduling Policies

First Come First Served (FCFS)

= |dea: Maintain a queue of ready processes

= Queue: a data structure with 2 operations
Insert: Add a new process to the back of the queue
Delete: Remove the process from the front of the

queue

front | P>

Ps

after P, has been scheduled to run

back

= Schedule next the process from the front of

the ReadyQ

11



Non-Preemptive Scheduling Policies

Shortest Process Next

= The policy which results in the lowest possible
average program execution time

= Schedule next that ready process which requires
the least CPU time in order to finish execution

= Problem: How do you estimate how much more
CPU time each process will require?

12



Preemptive Scheduling Policies

Round robin
o Maintain a FCFS ReadyQ

o When the currently running process is
preempted, schedule the process from the front
of the ReadyQ

o Insert the previously running process at the end
of the ReadyQ

o This is much fairer than any of the non-
preemptive scheduling policies

13



