
High Performance Computing
Lecture 17

Matthew Jacob

Indian Institute of Science



2

Some Possible Process States
 A process could be Waiting for something to 

happen
 Example: A parent process that made the wait() 

system call is waiting (sleeping) for its child 
process to terminate

 A process could be Ready for the OS to 
cause it to run

 Running, Waiting, Ready



3

Process Management
 What should the OS do when a process does 

something that will involve a long time?
 e.g., Anything that involves a hard disk access 

(file read/write operation, page fault, …)
 If it does nothing, the processor will be idle 

for billions of cycles
 The processor could have executed billions of 

instructions instead during that time

a long time



4

Process Management
 OS should try to maximize processor 

utilization
 utilization: fraction of time that the processor is 

busy
 OS could change status of that process to 

`Waiting’ and make another process
`Running’

 Question: Which other process?
 Determined by the process scheduler



5

Process Scheduler
 The part of the OS that manages the sharing 

of CPU time among processes
 Possible considerations that the scheduler 

could use in making scheduling decisions
 Minimize average program execution time
 Fairness to all the programs in execution



6

Process Scheduling Policies
 Idea 1: Let the currently Running process 

continue to do so until it does something that 
involves a long time
 Then switch to one of the Ready processes
 But what if the currently Running process is 

executing an infinite loop
while (1) ;                 /* a simple infinite loop */

 No other process would ever get to run if the OS 
uses Idea 1

 This is an example of a Non-preemptive policy
 It does not seem to be very fair to other processes



7

Process Scheduling Policies
 Preemptive vs Non-preemptive
 Preemptive policy: one where the OS `preempts’ 

the running process from the CPU even though it 
is not waiting for something

 Idea: give a process some maximum amount of 
CPU time before preempting it, for the benefit of 
the other processes

 CPU time slice: maximum amount of CPU time 
allotted to a process before preempting it from the 
CPU



8

Process State Transition Diagram

Running Ready

Waiting

preempted or 
yields CPU

scheduled

waiting for an event 
to happen

the awaited event 
happens



9

Context Switch
 When the OS changes which process is 

currently running on the CPU
 The switch takes some time, as it involves 

replacing the hardware state of the previously 
running process with that of the newly 
scheduled process
 Saving HW state of previously running process
 Restoring HW state of newly scheduled process

 Amount of time would help in deciding what a 
reasonable CPU timeslice value would be



10

Non-Preemptive Scheduling Policies
1. First Come First Served (FCFS)
 Idea: Maintain a queue of ready processes
 Queue: a data structure with 2 operations

1) Insert: Add a new process to the back of the queue
2) Delete: Remove the process from the front of the 

queue

 Schedule next the process from the front of 
the ReadyQ

front backP1 P2 P5



11

Non-Preemptive Scheduling Policies
1. First Come First Served (FCFS)
 Idea: Maintain a queue of ready processes
 Queue: a data structure with 2 operations

1) Insert: Add a new process to the back of the queue
2) Delete: Remove the process from the front of the 

queue

 Schedule next the process from the front of 
the ReadyQ

front backP2 P5

after P1 has been scheduled to run



12

Non-Preemptive Scheduling Policies
1. First Come First Served (FCFS)
2. Shortest Process Next
 The policy which results in the lowest possible 

average program execution time
 Schedule next that ready process which requires 

the least CPU time in order to finish execution
 Problem: How do you estimate how much more 

CPU time each process will require?



13

Preemptive Scheduling Policies
1. Round robin
 Maintain a FCFS ReadyQ
 When the currently running process is 

preempted, schedule the process from the front 
of the ReadyQ

 Insert the previously running process at the end 
of the ReadyQ

 This is much fairer than any of the non-
preemptive scheduling policies


