
High Performance Computing
Lecture 17

Matthew Jacob

Indian Institute of Science

2

Some Possible Process States
 A process could be Waiting for something to

happen
 Example: A parent process that made the wait()

system call is waiting (sleeping) for its child
process to terminate

 A process could be Ready for the OS to
cause it to run

 Running, Waiting, Ready

3

Process Management
 What should the OS do when a process does

something that will involve a long time?
 e.g., Anything that involves a hard disk access

(file read/write operation, page fault, …)
 If it does nothing, the processor will be idle

for billions of cycles
 The processor could have executed billions of

instructions instead during that time

a long time

4

Process Management
 OS should try to maximize processor

utilization
 utilization: fraction of time that the processor is

busy
 OS could change status of that process to

`Waiting’ and make another process
`Running’

 Question: Which other process?
 Determined by the process scheduler

5

Process Scheduler
 The part of the OS that manages the sharing

of CPU time among processes
 Possible considerations that the scheduler

could use in making scheduling decisions
 Minimize average program execution time
 Fairness to all the programs in execution

6

Process Scheduling Policies
 Idea 1: Let the currently Running process

continue to do so until it does something that
involves a long time
 Then switch to one of the Ready processes
 But what if the currently Running process is

executing an infinite loop
while (1) ; /* a simple infinite loop */

 No other process would ever get to run if the OS
uses Idea 1

 This is an example of a Non-preemptive policy
 It does not seem to be very fair to other processes

7

Process Scheduling Policies
 Preemptive vs Non-preemptive
 Preemptive policy: one where the OS `preempts’

the running process from the CPU even though it
is not waiting for something

 Idea: give a process some maximum amount of
CPU time before preempting it, for the benefit of
the other processes

 CPU time slice: maximum amount of CPU time
allotted to a process before preempting it from the
CPU

8

Process State Transition Diagram

Running Ready

Waiting

preempted or
yields CPU

scheduled

waiting for an event
to happen

the awaited event
happens

9

Context Switch
 When the OS changes which process is

currently running on the CPU
 The switch takes some time, as it involves

replacing the hardware state of the previously
running process with that of the newly
scheduled process
 Saving HW state of previously running process
 Restoring HW state of newly scheduled process

 Amount of time would help in deciding what a
reasonable CPU timeslice value would be

10

Non-Preemptive Scheduling Policies
1. First Come First Served (FCFS)
 Idea: Maintain a queue of ready processes
 Queue: a data structure with 2 operations

1) Insert: Add a new process to the back of the queue
2) Delete: Remove the process from the front of the

queue

 Schedule next the process from the front of
the ReadyQ

front backP1 P2 P5

11

Non-Preemptive Scheduling Policies
1. First Come First Served (FCFS)
 Idea: Maintain a queue of ready processes
 Queue: a data structure with 2 operations

1) Insert: Add a new process to the back of the queue
2) Delete: Remove the process from the front of the

queue

 Schedule next the process from the front of
the ReadyQ

front backP2 P5

after P1 has been scheduled to run

12

Non-Preemptive Scheduling Policies
1. First Come First Served (FCFS)
2. Shortest Process Next
 The policy which results in the lowest possible

average program execution time
 Schedule next that ready process which requires

the least CPU time in order to finish execution
 Problem: How do you estimate how much more

CPU time each process will require?

13

Preemptive Scheduling Policies
1. Round robin
 Maintain a FCFS ReadyQ
 When the currently running process is

preempted, schedule the process from the front
of the ReadyQ

 Insert the previously running process at the end
of the ReadyQ

 This is much fairer than any of the non-
preemptive scheduling policies

