
High Performance Computing
Lecture 18

Matthew Jacob

Indian Institute of Science



2

Preemptive Scheduling Policies
1. Round robin
 Maintain a FCFS ReadyQ
 When the currently running process is 

preempted, schedule the process from the front 
of the ReadyQ

 Insert the previously running process at the end 
of the ReadyQ

 This is much fairer than any of the non-
preemptive scheduling policies



3

Preemptive Scheduling Policies
1. Round robin
2. Priority based
 The readyQ need not be ordered on FCFS basis
 It could be ordered on any other priority instead
 For example: The process that has not run for 

the most time could get the highest priority
 The scheduler could even assign a longer CPU 

timeslice for certain processes



4

Example: Multilevel Feedback
 Used in some kinds of UNIX
 A Preemptive, Priority-based policy
 Multilevel: OS maintains one readyQ per 

priority level
 It schedules the process from the front of the 

highest priority non-empty queue
 Feedback: Priorities are not fixed
 A process could be moved to a lower/higher 

priority queue for fairness



5

Recall: Process Lifetime
 Process Lifetime: Time between fork() that 

created the process and exit() that causes its 
termination



6

About Time

Elapsed timeP1 P2 P3 P1 P3

Process P1
virtual time

P1 P1

Wallclock time
Real time

time



7

Recall: Process Lifetime
 Process Lifetime: Time between fork() that 

created the process and exit() that causes its 
termination

 At any given point in time, a running process 
is executing either in user mode or in system 
mode

 Can find out the total CPU time used by a 
process, as well as CPU time in user mode, 
CPU time in system mode



8

Time: Process virtual and Elapsed

P1 P2 P3 P1 P3

P1 P1

: Running in user mode
: Running in system mode

Elapsed time

Process P1
virtual time

Wallclock time
Real time

time

Process P1
virtual time



9

How is a Running Process Preempted?
 OS preemption code must run on the CPU
 How does OS get control of CPU from running 

process to run its preemption code?
 Hardware timer interrupt
 Hardware generated periodic event
 When it occurs, hardware automatically transfers 

control to OS code (timer interrupt handler)
 An interrupt is an example of a more general 

phenomenon called an exception



10

Exceptions
 Certain exceptional events that occur during 

program execution, handled by the 
processor HW

 There are two kinds of exceptions
1. Traps
 Page fault, Divide by zero, System call

2. Interrupts
 Timer, keyboard, disk

: Synchronous, software generated

: Asynchronous, hardware generated



11

What Happens on an Exception
1. Hardware

• Saves processor state
• Transfers control to corresponding piece of OS 

code, called the exception handler
2. Software (exception handler)

• Takes care of the situation as appropriate
• Ends with return from exception instruction

3. Hardware (execution of RFE instruction)
• Restores the saved processor state
• Transfers control back to the saved PC value


