
High Performance Computing
Lecture 18

Matthew Jacob

Indian Institute of Science



2

Preemptive Scheduling Policies
1. Round robin
 Maintain a FCFS ReadyQ
 When the currently running process is 

preempted, schedule the process from the front 
of the ReadyQ

 Insert the previously running process at the end 
of the ReadyQ

 This is much fairer than any of the non-
preemptive scheduling policies



3

Preemptive Scheduling Policies
1. Round robin
2. Priority based
 The readyQ need not be ordered on FCFS basis
 It could be ordered on any other priority instead
 For example: The process that has not run for 

the most time could get the highest priority
 The scheduler could even assign a longer CPU 

timeslice for certain processes



4

Example: Multilevel Feedback
 Used in some kinds of UNIX
 A Preemptive, Priority-based policy
 Multilevel: OS maintains one readyQ per 

priority level
 It schedules the process from the front of the 

highest priority non-empty queue
 Feedback: Priorities are not fixed
 A process could be moved to a lower/higher 

priority queue for fairness



5

Recall: Process Lifetime
 Process Lifetime: Time between fork() that 

created the process and exit() that causes its 
termination



6

About Time

Elapsed timeP1 P2 P3 P1 P3

Process P1
virtual time

P1 P1

Wallclock time
Real time

time



7

Recall: Process Lifetime
 Process Lifetime: Time between fork() that 

created the process and exit() that causes its 
termination

 At any given point in time, a running process 
is executing either in user mode or in system 
mode

 Can find out the total CPU time used by a 
process, as well as CPU time in user mode, 
CPU time in system mode



8

Time: Process virtual and Elapsed

P1 P2 P3 P1 P3

P1 P1

: Running in user mode
: Running in system mode

Elapsed time

Process P1
virtual time

Wallclock time
Real time

time

Process P1
virtual time



9

How is a Running Process Preempted?
 OS preemption code must run on the CPU
 How does OS get control of CPU from running 

process to run its preemption code?
 Hardware timer interrupt
 Hardware generated periodic event
 When it occurs, hardware automatically transfers 

control to OS code (timer interrupt handler)
 An interrupt is an example of a more general 

phenomenon called an exception



10

Exceptions
 Certain exceptional events that occur during 

program execution, handled by the 
processor HW

 There are two kinds of exceptions
1. Traps
 Page fault, Divide by zero, System call

2. Interrupts
 Timer, keyboard, disk

: Synchronous, software generated

: Asynchronous, hardware generated



11

What Happens on an Exception
1. Hardware

• Saves processor state
• Transfers control to corresponding piece of OS 

code, called the exception handler
2. Software (exception handler)

• Takes care of the situation as appropriate
• Ends with return from exception instruction

3. Hardware (execution of RFE instruction)
• Restores the saved processor state
• Transfers control back to the saved PC value


