
High Performance Computing
Lecture 19

Matthew Jacob

Indian Institute of Science

2

Exceptions
 Certain exceptional events that occur during

program execution, handled by the
processor HW

 There are two kinds of exceptions
1. Traps
 Page fault, Divide by zero, System call

2. Interrupts
 Timer, keyboard, disk

: Synchronous, software generated

: Asynchronous, hardware generated

3

What Happens on an Exception
1. Hardware

• Saves processor state
• Transfers control to corresponding piece of OS

code, called the exception handler
2. Software (exception handler)

• Takes care of the situation as appropriate
• Ends with return from exception instruction

3. Hardware (execution of RFE instruction)
• Restores the saved processor state
• Transfers control back to the saved PC value

4

Re-look at Process Lifetime
 Which process has the exception handling

time accounted against it?
 The process running at the time of the exception

 All interrupt handling time while process is in
running state is accounted against it
 As part of `running in system mode’

5

Concurrent Programming
 Until now: Program execution involved one

flow of control through the program
 Concurrent programming is about programs

with multiple flows of control
 For example: a program that runs as multiple

processes cooperating to achieve a common
goal

 To cooperate, processes must somehow
communicate

6

Inter Process Communication (IPC)
1. Processes can communicate using files
 Example: Communication between parent

process and child process
 Parent process creates 2 files before forking

child process
 Child inherits file descriptors from parent, and

they share the file pointers
 Can use one for parent to write and child to read,

other for child to write and parent to read

7

Inter Process Communication (IPC)
1. Processes can communicate using files
2. OS supports something called a pipe
 corresponds to 2 file descriptors (int fd[2])
 Read from fd[0] accesses data written to fd[1] in

FIFO (First In First Out) order and vice versa

8

Other IPC Mechanisms
1. Processes can communicate using files
2. OS supports something called a pipe
3. Processes could communicate through

variables that are shared between them
 Shared variables, shared memory; other

variables are private to a process
 Special OS support for program to specify

objects that are to be in shared regions of
address space

9

Virtual Memory & Shared Variables ??
 Address translation is used to protect one

process from another
 Each process uses virtual addresses (0 .. 2n-1)
 Then, how can 2 processes share a variable?

10

Other IPC Mechanisms
1. Processes can communicate using files
2. OS supports something called a pipe
3. Processes could communicate through

variables that are shared between them
4. Processes could communicate by sending

and receiving messages to each other
 Special OS support for these messages

11

More Ideas on IPC Mechanisms
5. Sometimes processes don’t need to

communicate explicit values to cooperate
 They might just have to synchronize their

activities
 Example: Process 1 reads 2 matrices, Process 2

multiplies them, Process 3 writes the result
matrix

 Process 2 should not start work until Process 1
finishes reading, etc.

 Called process synchronization
 Synchronization primitives
 Examples: mutex lock, semaphore, barrier

12

Programming With Shared Variables
 Consider a 2 process program in which both

processes increment a shared variable
shared int X = 0;
P1: P2:

X++; X++;
 Q: What is the value of X after this?
 Complication: Remember that X++ compiles

into something like
LW R1, 0(R2)
ADD R1, R1, 1
SW 0(R2), R1

13

shared int X = 0;

X
Process P1 Process P2

time

LW R1, X

LW R1, X
ADD R1, R1, 1
SW X, R1

ADD R1, R1, 1
SW X, R1

R1 R1

Context Switch

Context Switch

0

X++ X++

0 01 11

LW R1, X
ADD R1, R1, 1
SW X, R1

FINAL
VALUE
OF X
COULD
BE 1

14

Problem with using shared variables
 Final value of X could be 1!

P1 loads X into R1, increments R1
P2 loads X into register before P1 stores new value into X
Net result: P1 stores 1, P2 stores 1

 Moral of example: Necessary to synchronize
processes that are interacting using shared variables

 Problem arises when 2 or more processes try to
update shared variable

 Critical Section: part of program where shared
variable is accessed like this

15

Critical Section Problem: Mutual Exclusion

 Must synchronize processes so that they
access shared variable one at a time in
critical section; called Mutual Exclusion

 Mutex Lock: a synchronization primitive
 AcquireLock(L)
 Done before critical section of code
 Returns when safe for process to enter critical

section
 ReleaseLock(L)
 Done after critical section
 Allows another process to acquire lock

16

Implementing a Lock
int L=0; /* 0: lock available */

AcquireLock(L):
while (L==1);
L = 1;

ReleaseLock(L):
L = 0;

/* `BUSY WAITING’ */

17

Why this implementation fails
while (L == 1) ;

L = 1;

wait: LW R1, Addr(L)

BNEZ R1, wait

ADDI R1, R0, 1

SW R1, Addr(L)

18

Why this implementation fails
wait: LW R1, Addr(L)

BNEZ R1, wait

ADDI R1, R0, 1

SW R1, Addr(L)

Process 1 Process 2
LW R1 = 0

LW R1 = 0
BNEZ
ADDI
SW
Enter CS

BNEZ

ADDI

SW

Enter CS

time

Assume that lock L is currently
available (L = 0) and that 2
processes, P1 and P2 try to
acquire the lock L

CSwitch

CSwitch

IMPLEMENTATION ALLOWS
PROCESSES P1 and P2 TO BE IN
CRITICAL SECTION TOGETHER!

