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EXxceptions

Certain exceptional events that occur during
program execution, handled by the
processor HW

There are two kinds of exceptions
1. Traps: Synchronous, software generated
Page fault, Divide by zero, System call

2. Interrupts: Asynchronous, hardware generated
Timer, keyboard, disk



What Happens on an Exception

Hardware
° saves Processor state

« Transfers control to corresponding piece of OS
code, called the exception handler

Software (exception handler)

 Takes care of the situation as appropriate

* Ends with return from exception instruction
Hardware (execution of RFE instruction)

 Restores the saved processor state
« Transfers control back to the saved PC value



Re-look at Process Lifetime

Which process has the exception handling
time accounted against it?

o The process running at the time of the exception

All interrupt handling time while process is in
running state Is accounted against it

2 As part of running in system mode’



Concurrent Programming

Until now: Program execution involved one
flow of control through the program

Concurrent programming is about programs
with multiple flows of control

For example: a program that runs as multiple
processes cooperating to achieve a common
goal

To cooperate, processes must somehow
communicate



Inter Process Communication (1PC)

1. Processes can communicate using files

o Example: Communication between parent
process and child process

o Parent process creates 2 files before forking
child process

o Child inherits file descriptors from parent, and
they share the file pointers

o Can use one for parent to write and child to read,
other for child to write and parent to read



Inter Process Communication (1PC)

1.

2. OS supports something called a pipe
o corresponds to 2 file descriptors (int fd[2])

o Read from fd[0] accesses data written to fd[1] in
FIFO (First In First Out) order and vice versa



Other IPC Mechanisms

1.
2.

3. Processes could communicate through
variables that are shared between them

o Shared variables, shared memory; other
variables are private to a process

o Special OS support for program to specify
objects that are to be in shared regions of
address space



Virtual Memory & Shared Variables ??

Address translation is used to protect one
process from another

o Each process uses virtual addresses (0 .. 2"-1)
o Then, how can 2 processes share a variable?



Other IPC Mechanisms

1.

2.

3.

4.

g

Processes could communicate by sending
and receiving messages to each other

Special OS support for these messages
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More Ideas on IPC Mechanisms

5. Sometimes processes don't need to
communicate explicit values to cooperate
o They might just have to synchronize their
activities
o0 Example: Process 1 reads 2 matrices, Process 2

multiplies them, Process 3 writes the result
matrix

o Process 2 should not start work until Process 1
finishes reading, etc.

o Called process synchronization

o Synchronization primitives
Examples: mutex lock, semaphore, barrier
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Programming With Shared Variables

Consider a 2 process program in which both
processes increment a shared variable
shared int X = 0O;
Pl: P2:
X++: X++:

Q: What is the value of X after this?

Complication: Remember that X++ compiles
Into something like

LW R1, O0(R2)

ADD R1, RI1,1

SW  0(R2),R1
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shared int X = 0;

Process P1

o[ ]

X++
LW R1, X

Context Switch

ADDR1,R1,1
SW X, R1

Process P2

Lo ]

X++

LW R1, X
ADDR1,R1,1
SW X, R1

Context Switch

time

X

LW R1, X
ADD R1,R1,1
SW X, R1

FINAL
VALUE
OF X
COULD
BE 1
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Problem with using shared variables

Final value of X could be 1!

P1 loads X into R1, increments R1

P2 loads X into register before P1 stores new value into X
Net result: P1 stores 1, P2 stores 1

Moral of example: Necessary to synchronize
processes that are interacting using shared variables

Problem arises when 2 or more processes try to
update shared variable

Critical Section: part of program where shared
variable is accessed like this
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Critical Section Problem: Mutual Exclusion

Must synchronize processes so that they
access shared variable one at a time In
critical section; called Mutual Exclusion

Mutex Lock: a synchronization primitive

o AcquireLock(L)
Done before critical section of code

Returns when safe for process to enter critical
section

0 Releaselock(L)
Done after critical section
Allows another process to acquire lock
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Implementing a Lock
Int L=0; /* 0: lock available */
AcquireLock(L):
while (L==1); /* BUSY WAITING’ */
L =1;

ReleaselLock(L):
L =0;
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Why this implementation fails

while (L==1) ;
L =1;

)

wait: LW  R1, Addr(L)
BNEZ R1, wait
ADDI R1, RO, 1
SW R1, Addr(L)

17



Why this implementation fails

Process 1 Process 2

LWR1=0
CSwitch

BNEZ
ADDI

SW
Enter CS

LWR1=0
BNEZ
ADDI

SW

Enter CS

CSwitch

time

wait: LW  R1, Addr(L)
BNEZ R1, wait
ADDI R1, RO, 1

SW R1, Addr(L)

Assume that lock L is currently
available (L = 0) and that 2
processes, P1 and P2 try to
acquire the lock L

IMPLEMENTATION ALLOWS
PROCESSES P1 and P2 TO BE IN
CRITICAL SECTION TOGETHER!

18




