High Performance Computing
Lecture 19

Matthew Jacob

Indian Institute of Science

EXxceptions

Certain exceptional events that occur during
program execution, handled by the
processor HW

There are two kinds of exceptions
1. Traps: Synchronous, software generated
Page fault, Divide by zero, System call

2. Interrupts: Asynchronous, hardware generated
Timer, keyboard, disk

What Happens on an Exception

Hardware
° saves Processor state

« Transfers control to corresponding piece of OS
code, called the exception handler

Software (exception handler)

 Takes care of the situation as appropriate

* Ends with return from exception instruction
Hardware (execution of RFE instruction)

 Restores the saved processor state
« Transfers control back to the saved PC value

Re-look at Process Lifetime

Which process has the exception handling
time accounted against it?

o The process running at the time of the exception

All interrupt handling time while process is in
running state Is accounted against it

2 As part of running in system mode’

Concurrent Programming

Until now: Program execution involved one
flow of control through the program

Concurrent programming is about programs
with multiple flows of control

For example: a program that runs as multiple
processes cooperating to achieve a common
goal

To cooperate, processes must somehow
communicate

Inter Process Communication (1PC)

1. Processes can communicate using files

o Example: Communication between parent
process and child process

o Parent process creates 2 files before forking
child process

o Child inherits file descriptors from parent, and
they share the file pointers

o Can use one for parent to write and child to read,
other for child to write and parent to read

Inter Process Communication (1PC)

1.

2. OS supports something called a pipe
o corresponds to 2 file descriptors (int fd[2])

o Read from fd[0] accesses data written to fd[1] in
FIFO (First In First Out) order and vice versa

Other IPC Mechanisms

1.
2.

3. Processes could communicate through
variables that are shared between them

o Shared variables, shared memory; other
variables are private to a process

o Special OS support for program to specify
objects that are to be in shared regions of
address space

Virtual Memory & Shared Variables ??

Address translation is used to protect one
process from another

o Each process uses virtual addresses (0 .. 2"-1)
o Then, how can 2 processes share a variable?

Other IPC Mechanisms

1.

2.

3.

4.

g

Processes could communicate by sending
and receiving messages to each other

Special OS support for these messages

10

More Ideas on IPC Mechanisms

5. Sometimes processes don't need to
communicate explicit values to cooperate
o They might just have to synchronize their
activities
o0 Example: Process 1 reads 2 matrices, Process 2

multiplies them, Process 3 writes the result
matrix

o Process 2 should not start work until Process 1
finishes reading, etc.

o Called process synchronization

o Synchronization primitives
Examples: mutex lock, semaphore, barrier

11

Programming With Shared Variables

Consider a 2 process program in which both
processes increment a shared variable
shared int X = 0O;
Pl: P2:
X++: X++:

Q: What is the value of X after this?

Complication: Remember that X++ compiles
Into something like

LW R1, O0(R2)

ADD R1, RI1,1

SW 0(R2),R1

12

shared int X = 0;

Process P1

o[]

X++
LW R1, X

Context Switch

ADDR1,R1,1
SW X, R1

Process P2

Lo]

X++

LW R1, X
ADDR1,R1,1
SW X, R1

Context Switch

time

X

LW R1, X
ADD R1,R1,1
SW X, R1

FINAL
VALUE
OF X
COULD
BE 1

13

Problem with using shared variables

Final value of X could be 1!

P1 loads X into R1, increments R1

P2 loads X into register before P1 stores new value into X
Net result: P1 stores 1, P2 stores 1

Moral of example: Necessary to synchronize
processes that are interacting using shared variables

Problem arises when 2 or more processes try to
update shared variable

Critical Section: part of program where shared
variable is accessed like this

14

Critical Section Problem: Mutual Exclusion

Must synchronize processes so that they
access shared variable one at a time In
critical section; called Mutual Exclusion

Mutex Lock: a synchronization primitive

o AcquireLock(L)
Done before critical section of code

Returns when safe for process to enter critical
section

0 Releaselock(L)
Done after critical section
Allows another process to acquire lock

15

Implementing a Lock
Int L=0; /* 0: lock available */
AcquireLock(L):
while (L==1); /* BUSY WAITING’ */
L =1;

ReleaselLock(L):
L =0;

16

Why this implementation fails

while (L==1) ;
L =1;

)

wait: LW R1, Addr(L)
BNEZ R1, wait
ADDI R1, RO, 1
SW R1, Addr(L)

17

Why this implementation fails

Process 1 Process 2

LWR1=0
CSwitch

BNEZ
ADDI

SW
Enter CS

LWR1=0
BNEZ
ADDI

SW

Enter CS

CSwitch

time

wait: LW R1, Addr(L)
BNEZ R1, wait
ADDI R1, RO, 1

SW R1, Addr(L)

Assume that lock L is currently
available (L = 0) and that 2
processes, P1 and P2 try to
acquire the lock L

IMPLEMENTATION ALLOWS
PROCESSES P1 and P2 TO BE IN
CRITICAL SECTION TOGETHER!

18

