
High Performance Computing
Lecture 19

Matthew Jacob

Indian Institute of Science

2

Exceptions
 Certain exceptional events that occur during

program execution, handled by the
processor HW

 There are two kinds of exceptions
1. Traps
 Page fault, Divide by zero, System call

2. Interrupts
 Timer, keyboard, disk

: Synchronous, software generated

: Asynchronous, hardware generated

3

What Happens on an Exception
1. Hardware

• Saves processor state
• Transfers control to corresponding piece of OS

code, called the exception handler
2. Software (exception handler)

• Takes care of the situation as appropriate
• Ends with return from exception instruction

3. Hardware (execution of RFE instruction)
• Restores the saved processor state
• Transfers control back to the saved PC value

4

Re-look at Process Lifetime
 Which process has the exception handling

time accounted against it?
 The process running at the time of the exception

 All interrupt handling time while process is in
running state is accounted against it
 As part of `running in system mode’

5

Concurrent Programming
 Until now: Program execution involved one

flow of control through the program
 Concurrent programming is about programs

with multiple flows of control
 For example: a program that runs as multiple

processes cooperating to achieve a common
goal

 To cooperate, processes must somehow
communicate

6

Inter Process Communication (IPC)
1. Processes can communicate using files
 Example: Communication between parent

process and child process
 Parent process creates 2 files before forking

child process
 Child inherits file descriptors from parent, and

they share the file pointers
 Can use one for parent to write and child to read,

other for child to write and parent to read

7

Inter Process Communication (IPC)
1. Processes can communicate using files
2. OS supports something called a pipe
 corresponds to 2 file descriptors (int fd[2])
 Read from fd[0] accesses data written to fd[1] in

FIFO (First In First Out) order and vice versa

8

Other IPC Mechanisms
1. Processes can communicate using files
2. OS supports something called a pipe
3. Processes could communicate through

variables that are shared between them
 Shared variables, shared memory; other

variables are private to a process
 Special OS support for program to specify

objects that are to be in shared regions of
address space

9

Virtual Memory & Shared Variables ??
 Address translation is used to protect one

process from another
 Each process uses virtual addresses (0 .. 2n-1)
 Then, how can 2 processes share a variable?

10

Other IPC Mechanisms
1. Processes can communicate using files
2. OS supports something called a pipe
3. Processes could communicate through

variables that are shared between them
4. Processes could communicate by sending

and receiving messages to each other
 Special OS support for these messages

11

More Ideas on IPC Mechanisms
5. Sometimes processes don’t need to

communicate explicit values to cooperate
 They might just have to synchronize their

activities
 Example: Process 1 reads 2 matrices, Process 2

multiplies them, Process 3 writes the result
matrix

 Process 2 should not start work until Process 1
finishes reading, etc.

 Called process synchronization
 Synchronization primitives
 Examples: mutex lock, semaphore, barrier

12

Programming With Shared Variables
 Consider a 2 process program in which both

processes increment a shared variable
shared int X = 0;
P1: P2:

X++; X++;
 Q: What is the value of X after this?
 Complication: Remember that X++ compiles

into something like
LW R1, 0(R2)
ADD R1, R1, 1
SW 0(R2), R1

13

shared int X = 0;

X
Process P1 Process P2

time

LW R1, X

LW R1, X
ADD R1, R1, 1
SW X, R1

ADD R1, R1, 1
SW X, R1

R1 R1

Context Switch

Context Switch

0

X++ X++

0 01 11

LW R1, X
ADD R1, R1, 1
SW X, R1

FINAL
VALUE
OF X
COULD
BE 1

14

Problem with using shared variables
 Final value of X could be 1!

P1 loads X into R1, increments R1
P2 loads X into register before P1 stores new value into X
Net result: P1 stores 1, P2 stores 1

 Moral of example: Necessary to synchronize
processes that are interacting using shared variables

 Problem arises when 2 or more processes try to
update shared variable

 Critical Section: part of program where shared
variable is accessed like this

15

Critical Section Problem: Mutual Exclusion

 Must synchronize processes so that they
access shared variable one at a time in
critical section; called Mutual Exclusion

 Mutex Lock: a synchronization primitive
 AcquireLock(L)
 Done before critical section of code
 Returns when safe for process to enter critical

section
 ReleaseLock(L)
 Done after critical section
 Allows another process to acquire lock

16

Implementing a Lock
int L=0; /* 0: lock available */

AcquireLock(L):
while (L==1);
L = 1;

ReleaseLock(L):
L = 0;

/* `BUSY WAITING’ */

17

Why this implementation fails
while (L == 1) ;

L = 1;

wait: LW R1, Addr(L)

BNEZ R1, wait

ADDI R1, R0, 1

SW R1, Addr(L)

18

Why this implementation fails
wait: LW R1, Addr(L)

BNEZ R1, wait

ADDI R1, R0, 1

SW R1, Addr(L)

Process 1 Process 2
LW R1 = 0

LW R1 = 0
BNEZ
ADDI
SW
Enter CS

BNEZ

ADDI

SW

Enter CS

time

Assume that lock L is currently
available (L = 0) and that 2
processes, P1 and P2 try to
acquire the lock L

CSwitch

CSwitch

IMPLEMENTATION ALLOWS
PROCESSES P1 and P2 TO BE IN
CRITICAL SECTION TOGETHER!

