
High Performance Computing
Lecture 20

Matthew Jacob

Indian Institute of Science

2

Implementing a Lock
int L=0; /* 0: lock available */

AcquireLock(L):
while (L==1);
L = 1;

ReleaseLock(L):
L = 0;

/* `BUSY WAITING’ */

3

Why this implementation fails
while (L == 1) ;

L = 1;

wait: LW R1, Addr(L)

BNEZ R1, wait

ADDI R1, R0, 1

SW R1, Addr(L)

4

Why this implementation fails
wait: LW R1, Addr(L)

BNEZ R1, wait

ADDI R1, R0, 1

SW R1, Addr(L)

Process 1 Process 2
LW R1 = 0

LW R1 = 0
BNEZ
ADDI
SW
Enter CS

BNEZ

ADDI

SW

Enter CS

time

Assume that lock L is currently
available (L = 0) and that 2
processes, P1 and P2 try to
acquire the lock L

CSwitch

CSwitch

IMPLEMENTATION ALLOWS
PROCESSES P1 and P2 TO BE IN
CRITICAL SECTION TOGETHER!

5

Why this implementation fails
while (L == 1) ;

L = 1;

wait: LW R1, Addr(L)

BNEZ R1, wait

ADDI R1, R0, 1

SW R1, Addr(L)

6

Busy Wait Lock Implementation
 Hardware support will be useful to implement

a lock
 Example: Test&Set instruction
 A machine instruction with one memory operand

Test&Set Lock
tmp = Lock
Lock = 1
return tmp

Where these 3 steps happen
atomically or indivisibly.
i.e., all 3 happen as one operation
(with nothing happening in
between)

Atomic Read-Modify-Write (RMW) instruction

7

Busy Wait Lock with Test&Set
Lock variable declared as int L

L == 0 means that the lock is available
L == 1 means that the lock is in use

AcquireLock(L)
while (Test&Set(L)) /* busy wait */ ;
/ Busy wait until L has been Test&Set from 0 to 1
/ i.e., the return value from Test&Set is 0

ReleaseLock(L)
L = 0;

8

Busy Wait Lock with Test&Set
AcquireLock(L): while (Test&Set(L)) ;
ReleaseLock(L): L = 0;

P1 P2 P3
while(Test&Set(L)); while(Test&Set(L)); while(Test&Set(L));

Critical Section Critical Section Critical Section
L=0; L=0; L = 0;

Suppose that process P1 is in its Critical Section.

Processes P2 and P3 are trying to Acquire the
Lock in order to enter their Critical Sections

9

Busy Wait Lock with Test&Set
AcquireLock(L): while (Test&Set(L)) ;
ReleaseLock(L): L = 0;

P1 P2 P3
while(Test&Set(L)); while(Test&Set(L)); while(Test&Set(L));

Critical Section Critical Section Critical Section
L=0; L=0; L = 0;

The lock L == 1 due to Test&Set(L) that was executed by P1
When P2 and P3 execute Test&Set(L), they overwrite
the 1 and get a return value of 1

Then P1 exits its critical section

10

Busy Wait Lock with Test&Set
AcquireLock(L): while (Test&Set(L)) ;
ReleaseLock(L): L = 0;

P1 P2 P3
while(Test&Set(L)); while(Test&Set(L)); while(Test&Set(L));

Critical Section Critical Section Critical Section
L=0; L=0; L = 0;

11

More on Locks
 Other names for this kind of lock
 Mutex
 Spin wait lock
 Spinlock
 Busy wait lock

 There are also locks where instead of busy
waiting, an unsuccessful process gets
blocked by the operating system
 i.e., moved into the Waiting state until the lock

becomes available

12

Semaphore
 A more general synchronization mechanism
 Operations: P (wait) and V (signal)
 P(S)
 if S is nonzero, decrements S and returns
 Else, blocks the process until S becomes

nonzero, when the process is restarted
 After restarting, decrements S and returns

 V(S)
 Increments S by 1
 If there are other processes blocked for S, restarts

exactly one of them

13

Critical Section Problem & Semaphore
 Initialize a Semaphore S = 1
 Surround each critical section in the

concurrent program by calls to P(S) and V(S)

14

Critical Section Problem & Semaphore
 Initialize a Semaphore S = 1
 Surround each critical section in the

concurrent program by calls to P(S) and V(S)

Process P1
P(S);
Critical Section code

V(S);

if (S != 0)
S--; return / S==0

else
block process until S!=0
S--; return / S==0

S++ / S==1
Unblock a process blocked on S

15

Semaphore Examples
 The previous example showed how a

semaphore can be used to do the work of a
mutex lock

 Semaphores can be used for other purposes
as well

16

Semaphore Examples
 Semaphores can do more than mutex locks
 Example: Initialize semaphore S =10
 Suppose that processes surround code by

P(S), V(S) as with the previous example

P(S);
code

V(S);

if (S != 0)
S--; return

else
block process until S!=0
S--; return

S++
Unblock a process blocked on S

17

Semaphore Examples
 Semaphores can do more than mutex locks
 Example: Initialize semaphore S =10
 10 processes will be allowed to proceed
 Processes beyond that will be blocked until

one of the first 10 executes V(S)

18

Semaphore Examples
 Semaphores can do more than mutex locks
 Example: Consider our concurrent program

where process P1 reads 2 matrices; process
P2 multiplies them & process P3 outputs the
product
 Semaphores
Process P1 Process P2 Process P3

Read A[], B[] C[] = A[] * B[] Write C[]

S1

P(S1)

= 0

V(S1)

S2 = 0

P(S2)

V(S2)

