
High Performance Computing
Lecture 20

Matthew Jacob

Indian Institute of Science

2

Implementing a Lock
int L=0; /* 0: lock available */

AcquireLock(L):
while (L==1);
L = 1;

ReleaseLock(L):
L = 0;

/* `BUSY WAITING’ */

3

Why this implementation fails
while (L == 1) ;

L = 1;

wait: LW R1, Addr(L)

BNEZ R1, wait

ADDI R1, R0, 1

SW R1, Addr(L)

4

Why this implementation fails
wait: LW R1, Addr(L)

BNEZ R1, wait

ADDI R1, R0, 1

SW R1, Addr(L)

Process 1 Process 2
LW R1 = 0

LW R1 = 0
BNEZ
ADDI
SW
Enter CS

BNEZ

ADDI

SW

Enter CS

time

Assume that lock L is currently
available (L = 0) and that 2
processes, P1 and P2 try to
acquire the lock L

CSwitch

CSwitch

IMPLEMENTATION ALLOWS
PROCESSES P1 and P2 TO BE IN
CRITICAL SECTION TOGETHER!

5

Why this implementation fails
while (L == 1) ;

L = 1;

wait: LW R1, Addr(L)

BNEZ R1, wait

ADDI R1, R0, 1

SW R1, Addr(L)

6

Busy Wait Lock Implementation
 Hardware support will be useful to implement

a lock
 Example: Test&Set instruction
 A machine instruction with one memory operand

Test&Set Lock
tmp = Lock
Lock = 1
return tmp

Where these 3 steps happen
atomically or indivisibly.
i.e., all 3 happen as one operation
(with nothing happening in
between)

Atomic Read-Modify-Write (RMW) instruction

7

Busy Wait Lock with Test&Set
Lock variable declared as int L

L == 0 means that the lock is available
L == 1 means that the lock is in use

AcquireLock(L)
while (Test&Set(L)) /* busy wait */ ;
/ Busy wait until L has been Test&Set from 0 to 1
/ i.e., the return value from Test&Set is 0

ReleaseLock(L)
L = 0;

8

Busy Wait Lock with Test&Set
AcquireLock(L): while (Test&Set(L)) ;
ReleaseLock(L): L = 0;

P1 P2 P3
while(Test&Set(L)); while(Test&Set(L)); while(Test&Set(L));

Critical Section Critical Section Critical Section
L=0; L=0; L = 0;

Suppose that process P1 is in its Critical Section.

Processes P2 and P3 are trying to Acquire the
Lock in order to enter their Critical Sections

9

Busy Wait Lock with Test&Set
AcquireLock(L): while (Test&Set(L)) ;
ReleaseLock(L): L = 0;

P1 P2 P3
while(Test&Set(L)); while(Test&Set(L)); while(Test&Set(L));

Critical Section Critical Section Critical Section
L=0; L=0; L = 0;

The lock L == 1 due to Test&Set(L) that was executed by P1
When P2 and P3 execute Test&Set(L), they overwrite
the 1 and get a return value of 1

Then P1 exits its critical section

10

Busy Wait Lock with Test&Set
AcquireLock(L): while (Test&Set(L)) ;
ReleaseLock(L): L = 0;

P1 P2 P3
while(Test&Set(L)); while(Test&Set(L)); while(Test&Set(L));

Critical Section Critical Section Critical Section
L=0; L=0; L = 0;

11

More on Locks
 Other names for this kind of lock
 Mutex
 Spin wait lock
 Spinlock
 Busy wait lock

 There are also locks where instead of busy
waiting, an unsuccessful process gets
blocked by the operating system
 i.e., moved into the Waiting state until the lock

becomes available

12

Semaphore
 A more general synchronization mechanism
 Operations: P (wait) and V (signal)
 P(S)
 if S is nonzero, decrements S and returns
 Else, blocks the process until S becomes

nonzero, when the process is restarted
 After restarting, decrements S and returns

 V(S)
 Increments S by 1
 If there are other processes blocked for S, restarts

exactly one of them

13

Critical Section Problem & Semaphore
 Initialize a Semaphore S = 1
 Surround each critical section in the

concurrent program by calls to P(S) and V(S)

14

Critical Section Problem & Semaphore
 Initialize a Semaphore S = 1
 Surround each critical section in the

concurrent program by calls to P(S) and V(S)

Process P1
P(S);
Critical Section code

V(S);

if (S != 0)
S--; return / S==0

else
block process until S!=0
S--; return / S==0

S++ / S==1
Unblock a process blocked on S

15

Semaphore Examples
 The previous example showed how a

semaphore can be used to do the work of a
mutex lock

 Semaphores can be used for other purposes
as well

16

Semaphore Examples
 Semaphores can do more than mutex locks
 Example: Initialize semaphore S =10
 Suppose that processes surround code by

P(S), V(S) as with the previous example

P(S);
code

V(S);

if (S != 0)
S--; return

else
block process until S!=0
S--; return

S++
Unblock a process blocked on S

17

Semaphore Examples
 Semaphores can do more than mutex locks
 Example: Initialize semaphore S =10
 10 processes will be allowed to proceed
 Processes beyond that will be blocked until

one of the first 10 executes V(S)

18

Semaphore Examples
 Semaphores can do more than mutex locks
 Example: Consider our concurrent program

where process P1 reads 2 matrices; process
P2 multiplies them & process P3 outputs the
product
 Semaphores
Process P1 Process P2 Process P3

Read A[], B[] C[] = A[] * B[] Write C[]

S1

P(S1)

= 0

V(S1)

S2 = 0

P(S2)

V(S2)

