Module 4 (Lectures 16-20) Processes

1.

Consider the following pseudo-code program

for (I=0;1<3;i++)

fork();

How many processes will be created when this program is executed? Write a C
program implementing this functionality and experimentally confirm your
answer.
A computer system is initially idle. Subsequently, processes are created with the
properties shown in the table below. Assume that time starts at 0 and that a
process arriving at time t does so just before the currently running process (if any)
is preempted. The last column indicates the amount of running time that the
process requires.
Process Id | Time of | Number of Time units
creation | of execution required

P1 0 12
P2 3 8
P3 5 6
P4 7 6

Sketch a time line showing how the execution of these processes will be
scheduled by an operating system using Round Robin scheduling with a CPU
quantum of 1 time unit.

Repeat question 7 assuming instead that the operating system uses the Shortest
Job Next non-preemptive scheduling policy. Calculate the process response time
(time of process completion minus time of process creation) for each of the 4
processes. Compare the average response time with that under the Round Robin
scheduling policy of question 7.

Repeat question 7 assuming that the CPU quantum is 4 time units instead of 1
time unit. Once again, calculate the average response time.

Linux provides a mechanism called nice using which you can change the
scheduling priority of a process. Read the manual entry for nice. Experiment with
it while running programs on Linux. Is it useful in reducing program execution
time?

