
High Performance Computing
Lecture 21

Matthew Jacob

Indian Institute of Science

2

Semaphore Examples
 Semaphores can do more than mutex locks
 Example: Consider our concurrent program

where process P1 reads 2 matrices; process
P2 multiplies them & process P3 outputs the
product
 Semaphores
Process P1 Process P2 Process P3

Read A[], B[] C[] = A[] * B[] Write C[]

S1

P(S1)

= 0

V(S1)

S2 = 0

P(S2)

V(S2)

3

Deadlock
Consider the following process:

P1: AcquireLock (L); AcquireLock(L);
 Suppose that the first AcquireLock(L) succeeds
 P1 is then waiting for something (release of lock

that it is holding) that will never happen
 This is a simple example of a general problem

called deadlock
 Caused by a cycle of processes waiting for

resources held by others while holding
resources needed by others

4

Classical Problems
Producers-Consumers Problem
 Bounded buffer problem
 Producer process makes things and puts them

into a fixed size shared buffer
 Consumer process takes things out of shared

buffer and uses them
 Must ensure that producer doesn’t put into full

buffer or consumer take out of empty buffer
 While treating buffer accesses as critical section

5

Producers-Consumers Problem
shared Buffer[0 .. N-1]
Producer: repeatedly

Produce x
Buffer[i++] = x

Consumer: repeatedly

y = Buffer[- - i]
Consume y

; if (buffer is full) wait for consumption
; signal consumer

If (buffer is empty) wait for production

; signal producer

6

Dining Philosophers Problem
 N philosophers sitting around a circular table

with a plate of food in front of each and a fork
between each 2 philosophers

 Philosopher does: repeatedly
Eat (using 2 forks)
Think

 Problem: Avoid deadock; be fair

7

THREADS
Thread
 Thread of control in a process
 `Light weight process’

 Weight related to
 Time for creation
 Time for context switch
 Size of context

 Recall: Process as a Data Structure

8

Process as a Data Structure.
 What is the data manipulated by these

process operations?
1. Text, Data, Stack, Heap
2. Data stored in hardware
3. Other information maintained by the OS
 Process, parent and user identifiers
 Memory management information: Page table
 CPU time used by the process, in user/system
 File related info: Open files, file pointers

PROCESS CONTEXT

9

Threads and Processes
 Thread context

 Thread id
 Stack
 Stack pointer, PC, GPR values

 So, thread context switching can be much faster
than process context switch

 Many threads in the same process share parts of
that process context
 Virtual address space (other than stack)

 So, threads in the same process share variables
that are not stack allocated

10

Thread Implementation
 Could either be supported in the operating

system or by a library
 Pthreads: POSIX thread library
 int pthread_create

 pthread_t *thread, const pthread_attr_t *attr, void
*(*start_routine), void *arg

 pthread_attr
 pthread_join
 pthread_exit
 pthread_detach

11

Synchronization Primitives
Mutex locks

int pthread_mutex_lock(pthread_mutex_t *mutex)
If the mutex is already locked, the calling thread blocks

until the mutex becomes available. Returns with the
mutex object referenced by mutex in the locked state
with the calling thread as its owner.

pthread_mutex_unlock
Semaphores

sem_init
sem_wait
sem_post

12

Agenda
1. Program execution: Compilation, Object files, Function call

and return, Address space, Data & its representation (4)
2. Computer organization: Memory, Registers, Instruction set

architecture, Instruction processing (6)
3. Virtual memory: Address translation, Paging (4)
4. Operating system: Processes, System calls,

Process management (6)
5. Pipelined processors: Structural, data and control hazards,

impact on programming (4)
6. Cache memory: Organization, impact on programming (5)
7. Program profiling (2)
8. File systems: Disk management, Name management,

Protection (4)
9. Parallel programming: Inter-process communication,

Synchronization, Mutual exclusion, Parallel architecture,
Programming with message passing using MPI (5)

13

Basic Computer Organization

Cache
Memory

I/O

Bus

I/OI/O

MMU

ALU Registers

CPU

Control

14

Performance of Processor
 Which is more important?
 execution time of a single instruction
 throughput of instruction execution

i.e., number of instructions executed per unit time
 Cycles Per Instruction (CPI)
 Current ideas: CPI between 3 and 5
 Pipelining
 Why keep Fetch hardware idle while instruction is

being decoded
 Inspired by petroleum pipelines?

15

Pipelines
 Used for transportation of liquids or gases

over long distances
 1000s of kms
 Built with periodic pump/compressor stations to

keep the fluid flowing

1000 kms

refinery city

16

Inside the Processor

Mem
IR

+

PC

NPC

Reg
File

sign
extend

A

Imm

B

Inst Fetch
IF

Inst Decode
ID

4

ALU
outALU

Zero?

Mem LMD

Execution
EX

Memory
MEM

Cond

WB

IF WBMEMEXID

17

Processor Pipelining

IF WBMEMEXID
IF WBMEMEXID

IF WBMEMEXID
IF WBMEMEXID

• Execution time of each instruction is still 5 cycles, but
the throughput is now 1 instruction per cycle

• Initial pipeline fill time (4 cycles), after which 1
instruction completes every cycle

time

i1

i2

i3

i4

1 2 3 4 5 6 7 8

clock
cycles

