High Performance Computing
Lecture 22

Matthew Jacob

Indian Institute of Science

Pipelines

Used for transportation of liquids or gases
over long distances

2 1000s of kms

o Built with periodic pump/compressor stations to
keep the fluid flowing

. 1000 kms X

refinery city

Inside the Processor
={—
A » Zero?»Cond
NPC ~
—> —> I
PC SR R [P our | Mem L, [,
Mem —p| File f—p! B [T | |7
—> —|___>u—> I" I:U
sign |
tgn |mm
Inst Fetch Inst Decode Execution Memory
IF ID EX MEM WB

Processor Pipelining clock

cycles
1 2 3 4 5 6 7 8 time

i1 | F

o Execution time of each instruction is still 5 cycles, but
the throughput is now 1 instruction per cycle

 [Initial pipeline fill time (4 cycles), after which 1
Instruction completes every cycle

MIPS 1 Instructions: 3, 4 or 5 cycles

time

LW R1, O(R2)

1=

1D

ADD R3, R1, R2

1=

MIPS 1 Instructions: 3, 4 or 5 cycles

time

LW R1, O(R2)
JR R6

1=

1D

1=

D

WB

Pipelined Processor Datapath

=gl

PC

1=

= Zero?
'l ~
jgﬁ —:b_»D » Mem
File |mmp —|_->U_>/ —|_> ﬂ
1 tens)—>
ID EX MEM WB

Some Terminology

= Pipeline stages: IF, ID, EX, MEM, WB
= We describe this as a 5 stage pipeline
0 or a pipeline of depth 5

= Assume that the time delay through each
stage Is the same (say 1 clock cycle)

time

non- pipelined

time

= Pipeline Speedup =

pipelined

Pipeline Speedup [i+ [0 IESEIVE

For 5 stage pipeline taking 1 cycle per stage
o Let us compute the speedup over a non-pipelined
processor that takes 5 cycles for every instruction

o Calculate how much time each of these
processors takes to run a program involving the
execution of n instructions

Non-pipelined processor: 5n cycles

Pipelined processor: 4 + n cycles

on
0 Speedup = >> as N— o

4+n

Pipeline Speedup

A pipeline with p stages could give a speedup
of p (compared to a non-pipelined processor
that takes p cycles for each instruction)

l.e., A program would run p times faster on
the pipelined processor (than on the non-
pipelined processor)

o If on every clock cycle, an instruction completes
execution

10

Problem: Pipeline Hazards

A situation where an instruction cannot
proceed through the pipeline as it should

Hazard: a dangerous (hazardous) situation

From the perspective of correct program
execution

11

Problem: Pipeline Hazards

1. Structural hazard: When 2 or more
Instructions in the pipeline need to use the
same resource at the same time

2. Data hazard: When an instruction depends
on the data result of a prior instruction that
IS still in the pipeline

3. Control hazard: A hazard that arises due to
control transfer instructions

12

Problem: Pipeline Hazards

1.

Structural hazard: When 2 or more
Instructions in the pipeline need to use the
same resource at the same time

13

Structural Hazard

1=

1+ 1

| + 2

MEM and IF use ¢

1=

o ISR e |

1=

memory at same time <= s

| + 3

1=

LW R3, 8(R2)

14

Petroleum pipeline analogy?

)

l refinery
Diesel

Kerosene

city

15

Petroleum pipeline analogy?

)

l refinery
Diesel
Kerosene
AlIr

city

16

Structural Hazard

1=

1+ 1

| + 2

MEM and IF use ¢

o ISR e |

1=

o NN e |

1=

memory at same time <= s

| + 3

| + 3

LW R3, 8(R2)

17

Solving Structural Hazards

This hazard can be overcome by designing
main memory so that it can handle 2 memory
requests at the same time

o Double ported memory
Or, since we are assuming that memory
delays are hidden by cache memories...

o Include a separate instruction cache (for use by

the IF pipeline stage) and data cache (for use by
the MEM stage)

ldentify the possible structural hazards and
design so as to eliminate them

18

Problem: Pipeline Hazards

2.

Data hazard: When an instruction depends
on the data result of a prior instruction that
IS still in the pipeline

19

Data Hazard

R3 read by instruction i+1

R3 updated by instruction |

time

add R3,R1, R2

|+ 1 1=

ldea: Delay (or stall) the progress of instruction i+1
through the pipeline until the data is available in register
R3

20

